• Title/Summary/Keyword: jet penetration

Search Result 125, Processing Time 0.026 seconds

Numerical simulation of air discharged in subcooled water pool

  • Y. Cordova ;D. Blanco ;Y. Rivera;C. Berna ;J.L. Munoz-Cobo ;A. Escriva
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3754-3767
    • /
    • 2023
  • Turbulent jet discharges in subcooled water pools are essential for safety systems in nuclear power plants, specifically in the pressure suppression pool of boiling water reactors and In-containment Refueling Water Storage Tank of advanced pressurized water reactors. The gas and liquid flow in these systems is investigated using multiphase flow analysis. This field has been extensively examined using a combination of experiments, theoretical models, and Computational Fluid Dynamics (CFD) simulations. ANSYS CFX offers two approaches to model multiphase flow behavior. The non-homogeneous Eulerian-Eulerian Model has been used in this work; it computes global information and is more convenient to study interpenetrated fluids. This study utilized the Large Eddy Simulation Model as the turbulence model, as it is better suited for non-stationary and buoyant flows. The CFD results of this study were validated with experimental data and theoretical results previously obtained. The figures of merit dimensionless penetration length and the dimensionless buoyancy length show good agreement with the experimental measurements. Correlations for these variables were obtained as a function of dimensionless numbers to give generality using only initial boundary conditions. CFD numerical model developed in this research has the capability to simulate the behavior of non-condensable gases discharged in water.

Motility, Fertilizability and Subsequent Embryonic Development of Frozen-thawed Spermatozoa derived from Epididymis in Hanwoo

  • Yang, Byoung-Chul;Kang, Sung-Sik;Park, Chang-Seok;Kim, Ui-Hyung;Kim, Hyeong-Cheol;Jeon, Gi-Jun;Kim, Sidong;Lee, Seok-Dong;Lee, Hyun-Jae;Cho, Sang-Rae
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.271-276
    • /
    • 2015
  • The aim of the study was to investigate the ability of sperm derived from the epididymis in regard to sperm motility, sperm penetration to oocyte and subsequent development of the embryo. Frozen-thawed sperm from epididymis showed similar percentage of motile sperm (VSL ${\geq}25{\mu}m/sec$) as compared to that of commercial sperm (control). Sperm penetration of frozen-thawed epididymal and commercial sperm was not significantly different. Moreover, cleavage and blastocyst rates were similar in both epididymal and control. Sperm derived from the epididymis also showed fertilizability and subsequent embryonic development.

Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments (고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성)

  • Im, Gyeong-Hun;Lee, Bong-Su;Kim, Jong-Hyeon;Gu, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

Spray Characteristics of a Modulated Liquid Jet through 2nd Pulsed Control (2차 가진 제어 변조분사 특성 및 액체제트의 분무특성)

  • Kang, Young-Su;Lee, In-Chul;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.672-675
    • /
    • 2010
  • Spray characteristics for the modulation with a pulsed spray in low-frequency region were investigted by performing with additional internal pulsed injection. The 1st perturbative flow was generated by rotating-type pulsed device and the 2nd pulse source generated by the magnetic valve was used to modulate the 1st flow. A pattern of the modulated spray was observed through FFT result and visualization. In case of modulated spray with the 2nd pulse control, the width of up and down motion of the modulated spray is smaller than that of the spray without the 2nd pulse. Also, the depth of penetration of the down stream is higher than that of spray without the 2nd pulse.

  • PDF

Numerical Analysis of Temperature Distribution of the Explosive Material in the Double-Layer Liners (이중층 라이너의 폭발 재료 온도 분포 수치해석)

  • Mun, Sang Ho;Kim, See Jo;Lee, Chang Hee;Lee, Seong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.202-210
    • /
    • 2016
  • The development of new concepts of liner is of great importance to effectively neutralize the enemy's attack power concealed in the protective structure or armored vehicles. A double layer liner has a combination of two different materials, one for penetration of target and the other for explosion after penetration. Therefore, it is of great importance to understand the temperature distribution before impact which should be lower than the explosive temperature of pure explosive material of the liner used. In this study, two different liner materials were obtained using cold spray coating and these material properties were characterized by DSC experiments. Numerical computations were done and the effect of temperature distribution and changes over time at each point of the explosive material depending on the layer types of the liner were discussed and analysed in the jet state.

Studies on the Application of Starch for paper surface sizing(III) - The influence of surface sizing treatment with starch on the quality of uncoated printing paper - (종이 표면 사이즈 프레스용 전분의 적용에 관한 연구 -표면 사이즈용 전분이 백상지 품질에 미치는 영향 -)

  • 윤지영;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.1-12
    • /
    • 2002
  • Starch dissolved in paper-mill wastes, either as a result of poor retention on the paper web or recycling of surface-treated broke, was a major pollutant Laboratory tests were performed by using different kinds of starch as a surface treatment. It was concluded that the use of cationic starch can positively affect the level of starch dissolved in liquid effluents. When cationically modified starches were used for surface sizing, the starch was tightly bound to the paper fibers, it was not removed during the repulping of broke. The result of mill trial in fine paper manufacture for the application of low-viscosity cationic starches used in size press reduced COD load in the effluents and increased One Pass Retention. It had been found that when cationic starch used as a surface sizing agent, more starch was retained on or near the surface of the sheet than with conventional oxidized starches. Thus surface strengths and quality were improved. In addition it is possible to maintain the desired level of starch penetration into the fiber net and improve porosity, opacity and brightness. In contrast, in most cases, dusting problems are notably eliminated. Cationic surface sized starch improved black and color ink-jet print quality in terms of feathering and optical density of the print image. These improved properties were believed to be due to a combination of fiber bonding and surface orientation more uniform starch concentration on the paper surface was resulted. Moreover cationic charges in the paper surface lend themselves excellently to fix ink jet ink anionic in nature.

Numerical Analysis of Deformation Characteristics in the Double-Layer Liner According to Explosive Material Distribution (이중층 라이너에서 폭발 재료 분포에 따른 변형 특성 수치해석)

  • Mun, Sang Ho;Kim, See Jo;Lee, Chang Hee;Lee, Seong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.618-628
    • /
    • 2016
  • The development of new concepts of liners is required in order to effectively neutralize the enemy's attack power concealed in the armored vehicles. A multiple-layer liner is one of possibilities and has a mechanism for explosion after penetrating the target which is known as "Behind Armor Effect." The multiple-layer explosive liner should have sufficient kinetic energy to penetrate the protective structure and explosive material react after target penetration. With this in mind, double-layer liner materials were obtained by cold spray coating methods and these material properties were experimentally characterized and used in this simulation for double-layer liners. In this study, numerical simulations in the three different layer types, i.e., single, A/B, A/B/A in terms of the layer location were verified in terms of finite element mesh sizes and numerical results for the jet tip velocity, kinetic energy, and the corresponding jet deformation characteristics were analysed in detail depending on the structure of layer types.

Numerical Simulation on the Steel Plate Cutting Performances of Bent-Shaped Charge Holder Blasting (드로잉 가공 성형폭약용기의 강판절단성능에 관한 수치해석적 연구)

  • Min, Gyeong-Jo;Park, Hoon;Oh, Se-Wook;Park, Se-Woong;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Locally damaged structures caused by earthquake or extraordinary external forces have been required to rapidly be dismantled because of its possibility of additional collapses. Particularly, steel frame structures were demolished by the shaped charge blasting method. Recently a research suggested a shape charge blasting technique which uses bent-shaped charge holder of copper plate and emulsion explosive charge to cut thick steel plates. This study simulated the cutting performance of the bent-shaped charge holder with considering types of explosives, thickness of copper liner and stand-off distances using LS-DYNA software. The shape charge blasting test of a 25mm thickness steel plate were used to calibrate the input parameters of the numerical models. The penetration depth and penetration width were analysed with different types of explosives, thickness of copper liner and stand-off distances.

Effect of the distance between the adjacent injectors on penetration and mixing characteristics of the jet in supersonic crossflow (수평 배치된 분사구의 배치 간격에 따른 초음속 유동장 내 분사 유동의 침투 및 혼합 특성)

  • Kim, Sei Hwan;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.81-89
    • /
    • 2018
  • In the present study, a numerical investigation was conducted to analyze the effect of the distance between the adjacent injectors on the characteristics of flow structure, fuel penetration, and air/fuel mixing. Numerical results were validated with experimental data using a single injection. Subsequently, the same injector geometry and properties were applied on a non-reacting flow simulation with multiple injectors. Total pressure loss, penetration height, and mixing efficiency were compared with the distance between the injectors. The results showed that each injected gas merged into a single stream, resulting in the 2D-like flow fields under the condition of short distance and lower mixing efficiency along with higher total pressure loss. When the distance between the injectors increased, total pressure loss reduced and mixing efficiency increased due to the weakening of interactions between the injected gases.

Effect of Injection Angle and Length to Diameter Ratios on Drop and Penetration Characteristics in Cross-flow (아름속 횡단 기체 유동장에서 노즐 형상 변화와 분사각 변화가 액적크기와 침투거리에 미치는 영향)

  • Lee, Bong-Soo;Ko, Jung-Bin;Cho, Woo-Jin;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.51-58
    • /
    • 2006
  • The spray characteristics of liquid jet injected into subsonic cross-flow were investigated experimentally. Spray trajectories were captured using CCD camera. Droplet sizes were measured using PDPA and Image Express. The nozzle diameter was 0.5 mm, and its length-to-diameter ratios (L/D) ran$4.11{\times}10^6$ged from 1.0 to 6.0. Experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration length is decreased by increasing Weber number. At low injection angle(${\theta}$ < $90^{\circ}$), Weber number is dominant parameter for trajectories, but at high injection angle(${\theta}$ > $90^{\circ}$), L/D is dominant parameter for trajectories rather than Weber number.