• Title/Summary/Keyword: j-Factor Method

Search Result 620, Processing Time 0.023 seconds

Development of an Index for the Evaluation of Intake Booming Noise of a Passenger Car (차량의 흡기부밍소음 평가지수 개발)

  • Park Y. W.;Chai J. B.;Jang H. K.;Lee J. K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.884-890
    • /
    • 2004
  • In this paper, an index for the evaluation of vehicle intake booming noise is developed through a correlation analysis of objective measurement data and subjective evaluation data. First, intake orifice noise is measured at the wide-open test condition. And then, acoustic transfer function between intake orifice noise and interior noise at the steady state condition is estimated. Simultaneously, subjective evaluation was carried out with a ten-scale score by 8 engineers. Next, the correlation analysis between the psycho-acoustic parameters derived from the measured data and the subjective evaluation is performed. The most critical factor was determined and the corresponding index for the intake booming noise is obtained from the multiple factor regression method. At last, the effectiveness of the proposed index is validated.

Design for Improving the Loss Factor of Composite with Sandwich Structure (샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계)

  • Lee, C. M.;Jeon, G.S.;Kang, D.S.;Kim, B.J.;Kim, J.H.;Kang, M.H.;Seo, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.

STUDY ON VIEW FACTOR CALCULATION FOR RADIATIVE HEAT TRANSFER BY USING THE MESH SUBDIVISION METHOD (격자 세분화 방법을 고려한 복사열전달 형상계수 계산 기법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Since experiments on the actual operational status are said to be very impractical because of their economic and repeatability problems, it is difficult to understand the thermal profiles of aerospace or military equipments. Thus, the CFD codes with considering the radiation heat transfer are used to compensate the defect. In case, analyzing the radiation exchanges between the object surfaces are very important. Because the temperature and the IR signal distributions of the object surface are significantly affected by the radiative heat transfer. To achieve accurate thermal radiation exchange between surfaces, it is important to calculate the radiation view factor precisely. Finer subdivision of meshes can be used to increase the accuracy of radiation view factor, but if the mesh is subdivided infinitely, the time required for calculation increases significantly and thus decreasing the efficiency. If the subdivision is not sufficient, assurance of accuracy is not guaranteed. In this paper, optimal mesh subdivision method using the solid angle has been successfully tested and found to be useful in increasing the efficiency of calculating the shape factors.

Development of New Z-Factor for the Evaluation of Circumferential Surface Crack In Ferristic Steel Pipings (페라이틱 강 배관내의 원주방향 표면균열 평가를 위한 새로운 Z-Factor의 개발)

  • Choi, Yeong-Hwan;Chung, Yeon-Ki;Lee, Jeong-Bae;WilkowsKi, Gery
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1798-1809
    • /
    • 1996
  • The purpose of this paper is to develop new Z-Factors to evaluate the behavior of circumferential surface crack in ferritic steel piping including base metal and Submerged Arc Weld(SAW) metal in nuclear power plant. The Z-factor is a load multiplier to convert plastic load to elasto-plastic load. However the current Z-Factor is a load multiplier to convert plastic load to elasto-plastic load. However the current Z-Factor gives too conservative results. In this study, a J-estimation method, SC.TNP method, which is based on GE/EPRI expression, is used to develop new Z-Factors. The desirabilities of both the SC.TNP mehtod and the new Z-Factors are examined using the previous experimental results for the circumferential surface crack in ferritic steel pippings. The results are as follows ; (1) The SC.TNP mehtod is good for describing the circumferential surface crack behavior in farritic steel pipings, while the well-known R6 mehtod and DPFAD method give too conservative results. (2) The ASME-Z-Factor method using nwe Z-Factors well predicts the behavior of circumferential surface crack in ferritic steel pipings including base emtal and SAW metal.

Development of Automated J-Integral Analysis System for 3D Cracks (3차원 J적분 계산을 위한 자동 해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF

Platen Weight Reduction Design of Extruder Using Topology Optimization Design (위상최적설계를 활용한 압출기의 플라텐 경량화 설계)

  • Kim, D.Y.;Kim, J.W.;Lee, J.I.;Jo, A.R.;Lee, S.Y.;Jeong, M.S.;Ko, D.C.;Jang, J.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.302-308
    • /
    • 2022
  • In this study, the weight of the platen was reduced using the structural strength analysis and topology optimization design of the extruder by finite element analysis. The main components of the extruder such as the stem and billet, were modeled, and the maximum stress and safety factor were verified through structural strength analysis. Based on the results of the structural strength analysis, the optimal phase that satisfies the limitation given to the design area of the structure and maximizes or minimizes the objective function was obtained through a numerical method. The platen was redesigned with a phase-optimal shape, the weight was reduced by 40% (from the initial weight of 11.1 tons to 6.6 tons), and the maximum stress was 147.49 MPa safety factor of 1.86.

A PWM Method for Single-Phase 3-Level High Power Rectifiers (단상 3레벨 대용량 정류기의 PWM방법)

  • Cho, S.J.;Song, J.H.;Kim, Y.D.;Choy, I;Yoo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1937-1939
    • /
    • 1998
  • This paper presents a simple switching method to generate a PWM pattern mostly relevant to signle-phase three-level PWM rectifier. The adopted PWM switching pattern is performed in a manner similar to the space vector PWM method, which is popularly used in the three-phase rectifier and inverter. A set of possible voltages has been selected so that an equation with a time integral considered within a sampling period should be satisfied every sampling time. The simulation result shows that the proposed control scheme is good in some performance criteria such as unity power factor, low harmonic distortion of input current, dynamic response and voltage balancing of two series-connected DC capacitors.

  • PDF

A Study on Enhancing the Load Power Factor from the Point of View of Economic Operation Using the Load Power Factor Sensitivity Method (부하역률 감도기법 적용에 의한 전력시스템의 경제운용 측면에서의 역률개선 방안 연구)

  • Lee B. H.;Kim J. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.153-155
    • /
    • 2004
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the integrated costs are used for determining the value of the load power factor from the point of view of the economic operation. It is shown through the application to a large-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

Experimental Study On Power Flow Finite Element Method of Vibration of a Plate Partially Covered with a Damping Sheets (부분 제진 평판 진동 해석을 위한 파워흐름유한요소법의 실험적 연구)

  • Lee, Y.H.;Lee, J.Y.;Kil, H.G.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.496-497
    • /
    • 2009
  • In this paper the power flow finite element method (PFFEM) has been used to analyze the vibration of a plate partially covered with a damping sheet. Experiments have been performed to measure the loss factor and frequency response functions of the plate partially covered with the damping sheet. The data for the loss factor has been used as the input data to predict the vibration of the coupled plates with PFFEM. The comparison between the experimental results and the predicted PFFEM results for the frequency response functions has been performed. It showed that PFFEM can be effectively used to predict structural vibration in medium-to-high frequency ranges.

  • PDF

How does a torque converter affect the vehicle performance? Torque converter analysis using Taguchi method (다구찌 방법을 이용한 토크 컨버터가 차량성능에 미치는 영향 분석)

  • Lee, Chin-Won;Ahn, Kuk-Hyun;Park, Y.I.;Lim, W.S.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.558-564
    • /
    • 2001
  • General vehicle is evaluated by its acceleration, fuel economy, NVH (Noise, Vibration and Harshness) and subjective (Launching feel) performance. The first step to enhance its performance is to know how much each component affects on the vehicle performance. It is very important to know what is the key factor of the component among many specifications. Hydraulic torque converter can be expressed by means of its performance curve (torque ratio and capacity factor). In this paper, the key factor of torque converter, which affect vehicle performance, are explored by using Taguchi method.

  • PDF