• Title/Summary/Keyword: itinerary recommendation system

Search Result 6, Processing Time 0.026 seconds

Personalized Itinerary Recommendation System based on Stay Time (체류시간을 고려한 여행 일정 추천 시스템)

  • Park, Sehwa;Park, Seog
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Recent developments regarding transportation technology have positioned travel as a major leisure activity; however, trip-itinerary planning remains a challenging task for tourists due to the need to select Points of Interest (POI) for visits to unfamiliar cities. Meanwhile, due to the GPS functions on mobile devices such as smartphones and tablet PCs, it is now possible to collect a user's position in real time. Based on these circumstances, our research on an automatic itinerary-planning system to simplify the trip-planning process was conducted briskly. The existing studies that include research on itinerary schedules focus on an identification of the shortest path in consideration of cost and time constraints, or a recommendation of the most-popular travel route in the destination area; therefore, we propose a personalized itinerary-recommendation system for which the stay-time preference of the individual user is considered as part of the personalized service.

CYTRIP: A Multi-day Trip Planning System based on Crowdsourced POIs Recommendation (CYTRIP: 크라우드 소싱을 이용한 POI 추천 기반의 여행 플래닝 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1281-1284
    • /
    • 2015
  • Multi-day trip itinerary planning is complex and time consuming task, from selecting a list of worth visiting POIs to arranging them into an itinerary with various constraints and requirements. In this paper, we present CYTRIP, a multi-day trip itinerary planning system that engages human computation (i.e. crowd recommendation) to collaboratively recommend POIs by providing a shared workspace. CYTRIP takes input the collective intelligence of crowd (i.e. recommended POIs) to build a multi-day trip itinerary taking into account user's preferences, various time constraints and locations. Furthermore, we explain how we engage crowd in our system. The planning problem and domain are formulated as AI planning using PDDL3. The preliminary empirical experiments show that our domain formulation is applicable to both single-day and multi-day trip planning.

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

Incorporating Time Constraints into a Recommender System for Museum Visitors

  • Kovavisaruch, La-or;Sanpechuda, Taweesak;Chinda, Krisada;Wongsatho, Thitipong;Wisadsud, Sodsai;Chaiwongyen, Anuwat
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • After observing that most tourists plan to complete their visits to multiple cultural heritage sites within one day, we surmised that for many museum visitors, the foremost thought is with regard to the amount of time is to be spent at each location and how they can maximize their enjoyment at a site while still balancing their travel itinerary? Recommendation systems in e-commerce are built on knowledge about the users' previous purchasing history; recommendation systems for museums, on the other hand, do not have an equivalent data source available. Recent solutions have incorporated advanced technologies such as algorithms that rely on social filtering, which builds recommendations from the nearest identified similar user. Our paper proposes a different approach, and involves providing dynamic recommendations that deploy social filtering as well as content-based filtering using term frequency-inverse document frequency. The main challenge is to overcome a cold start, whereby no information is available on new users entering the system, and thus there is no strong background information for generating the recommendation. In these cases, our solution deploys statistical methods to create a recommendation, which can then be used to gather data for future iterations. We are currently running a pilot test at Chao Samphraya national museum and have received positive feedback to date on the implementation.

Implementation of a Travel Route Recommendation System Utilizing Daily Scheduling Templates

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.137-146
    • /
    • 2022
  • In relation to the travel itinerary recommendation service, which has recently become in high demand, our previous work introduces a method to quantify the popularity of places including tour spots, restaurants, and accommodations through social big data analysis, and to create a travel schedule based on the analysis results. On the other hand, the generated schedule was mainly composed of travel routes that connected tour spots with the shorted distance, and detailed schedule information including restaurants and accommodation information for each travel date was not provided. This paper presents an algorithm for constructing a detailed travel route using a scenario template in a travel schedule created based on social big data, and introduces a prototype system that implements it. The proposed system consists of modules such as place information collection, place-specific popularity score estimation, shortest travel rout generation, daily schedule organization, and UI visualization. Experiments conducted based on social reviews collected from 63,000 places in the Gyeongnam province proved effectiveness of the proposed system.

Development of Customized Trip Navigation System Using Open Government Data (공공데이터를 활용한 맞춤형 여행 네비게이션 시스템 구현)

  • Shim, Beomsoo;Lee, Hanjun;Yoo, Donghee
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • Under the flag of creative economy, Korea government is now releasing public data in order to develop or provide a range of services. In this paper, we develop a customized trip navigation system to recommend a trip itinerary based on integration of open government data and personal tourist data. The system uses case-based reasoning (CBR) to provide a personalized trip navigation service. The main difference between existing trip information systems and ours is that our system can offers a user-oriented information service. In addition, our system supports Turn-key style contents provision to maximize convenience. Our system can be a good example of the way in which open government data can be used to design a new service.