• 제목/요약/키워드: itinerant electrons

검색결과 2건 처리시간 0.016초

Conceptual understanding of ubiquitous superconductivity

  • Hwang, Jungseek
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.6-9
    • /
    • 2020
  • Since the discovery of superconductivity, the unique and mysterious phenomenon has been observed in various metallic material systems. Now days, the superconductivity becomes ubiquitous because almost every metallic material system shows the superconductivity when it is cooled down enough. This ubiquity of the superconductivity is associated with the fermionic nature and itinerancy of electrons in metallic materials. Because fermions are governed by the Pauli's exclusion principle the total energy of fermions is much larger than that of bosons. Therefore, fermionic itinerant electrons are fundamentally instable. Itinerant electrons are able to find "a way" to lead them to their lowest possible energy state through an available bosonization (or pairing) process and Bose-Einstein condensation. Therefore, the lowest possible energy state of itinerant electrons will be a superconducting state, which is "their ultimate destination". This may explain the reason why the superconductivity is ubiquitous.

광전자 분석 실험을 이용한 $Ba(Fe_{1-x}Ru_x)_2As_2$ 물질의 전자구조분석 (Electronic Structure Studies on $Ba(Fe_{1-x}Ru_x)_2As_2$ by Photoemission)

  • 정원식;김용관;김범영;;;엄만진;김준성;김창영
    • Progress in Superconductivity
    • /
    • 제12권2호
    • /
    • pp.99-103
    • /
    • 2011
  • We performed angle resolved photoelectron spectroscopy (ARPES) studies on Ru doped $BaFe_2As_2$ with various Ru contents. Ru, which is doped into a parent compound $BaFe_2As_2$ and substitute Fe, does not donate or accept electrons. However, it induces superconductivity. From ARPES data along the high symmetry cuts and Fermi surface maps, we investigate the electron correlation and carrier density at the Fermi level. We observe that the Fermi velocity increases with Ru doping, suggesting reduction in electron correlation. In addition, we address issues on local vs. itinerant pictures for the magnetism in $BaFe_2As_2$.