Browse > Article
http://dx.doi.org/10.9714/psac.2020.22.4.006

Conceptual understanding of ubiquitous superconductivity  

Hwang, Jungseek (Department of Physics, Sungkyunkwan University)
Publication Information
Progress in Superconductivity and Cryogenics / v.22, no.4, 2020 , pp. 6-9 More about this Journal
Abstract
Since the discovery of superconductivity, the unique and mysterious phenomenon has been observed in various metallic material systems. Now days, the superconductivity becomes ubiquitous because almost every metallic material system shows the superconductivity when it is cooled down enough. This ubiquity of the superconductivity is associated with the fermionic nature and itinerancy of electrons in metallic materials. Because fermions are governed by the Pauli's exclusion principle the total energy of fermions is much larger than that of bosons. Therefore, fermionic itinerant electrons are fundamentally instable. Itinerant electrons are able to find "a way" to lead them to their lowest possible energy state through an available bosonization (or pairing) process and Bose-Einstein condensation. Therefore, the lowest possible energy state of itinerant electrons will be a superconducting state, which is "their ultimate destination". This may explain the reason why the superconductivity is ubiquitous.
Keywords
superconductivity; itinerant electrons; cooper pairs; electron-phonon interaction; bosonization; retarded interactions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Meissner and R. Ochsenfeld, "Ein neuer Effekt bei Eintritt der Supraleitfahigkeit," Naturwissenschaften, vol. 21, pp. 787-788, 1933   DOI
2 D. J. Scalapino, "The Cuprate Pairing Mechanism," Science, vol. 284, pp. 1282, 1999.   DOI
3 P. W. Anderson, "Is there glue in cuprate superconductors?," Science, vol. 316, pp. 1705, 2007.   DOI
4 A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, "Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors," Nature, vol. 412, pp. 510-514, 2001.   DOI
5 J. Hwang, G. D. Gu, and T. Timusk, "High-transition-temperature superconductivity in the absence of the magnetic-resonance mode," Nature, vol. 427, pp. 714-717, 2004.   DOI
6 T. Dahm, V. Hinkov, S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, J. Fink, B. Büchner, D. J. Scalapino, W. Hanke, and B. Keimer, "Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor," Nat. Phys., vol. 5, pp. 217-221, 2009.   DOI
7 John Bardeen, Leon Cooper, and J. R. Schrieffer, "Theory of Superconductivity," Physical Review, vol. 108, pp. 1175, 1957.   DOI
8 Jules de Launay, "The Isotope Effect in Superconductivity," Phys. Rev., vol. 93, pp. 661, 1954 and references therein.   DOI
9 J. P. Carbotte, "Properties of boson-exchange superconductors," Rev. Mod. Phys., vol. 62, pp. 1027, 1999   DOI
10 N. W. Ashcroft and N. D. Mermin, Solid State Physics (1st ed.) by Holt, Reinhart, and Winston, pp. 299-302, 1976.
11 G. D. Mahan, Many-Particle Physics, Kluwer Academic, 1981.
12 I. I. Mazin, "Superconductivity gets an iron boost," Nature, vol. 464, pp. 183-186, 2010.   DOI
13 D. N. Basov and A. V. Chubukov, "Manifesto for a higher Tc," Nat. Phys., vol. 7, pp. 272-276, 2011.   DOI
14 A. J. Millis, H. Monien, and D. Pines, "Phenomenological model of nuclear relaxation in the normal state of YBa2Cu3O7," Phys. Rev. B, vol. 42, pp. 167, 1990.   DOI
15 Jules P Carbotte, Thomas Timusk, and Jungseek Hwang, "Bosons in high-temperature superconductors: an experimental survey," Rep. Prog. Phys., vol. 74, pp. 066501, 2011 and reference therein.   DOI
16 J. Hwang, E. Schachinger, J. P. Carbotte, F. Gao, D. B. Tanner, and T. Timusk, "Bosonic Spectral Density of Epitaxial Thin-Film La1.83Sr0.17CuO4 Superconductors from Infrared Conductivity Measurements," Phys. Rev. Lett., vol. 100, pp. 137005, 2008.   DOI
17 Saurabh Maiti and Andrey V. Chubukov, "Superconductivity from repulsive interaction," AIP Conference Proceedings, vol. 1550, pp. 3, 2013.
18 H. K. Onnes, "The resistance of pure mercury at helium temperatures," Commun. Phys. Lab. Univ. Leiden, vol. 12, pp. 120, 1911.
19 W. Meissner and R. Ochsenfeld, "Ein neuer Effekt bei Eintritt der Supraleitfahigkeit," Naturwissenschaften, vol. 21, pp. 787-788, 1933.   DOI
20 M. Tinkham, Introduction to Superconductivity, second edition, McGraw-Hill Book Co., New York, 2004.
21 Superconductivity - Wikipedia (https://en.wikipedia.org/wiki/Superconductivity), 2020 and references therein.
22 A. J. Leggett, "The Ubiquity of Superconductivity," Annu. Rev. Condens. Matter Phys., pp. 11-30, 2011 and reference therein.
23 A. Einstein, "Quantentheorie des einatomigen idealen Gases," Konigliche Preussische Akademie der Wissenschaften. Sitzungsberichte, pp. 261-267, 1924.
24 W. Pauli, "Uber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren," Zeitschrift fur Physik, vol. 31, pp. 765-783, 1925.   DOI
25 E. Fermi, "Sulla quantizzazione del gas perfetto monoatomico," Rendiconti Lincei (in Italian), vol. 3, pp. 145-149, 1926
26 S. N. Bose, "Plancks Gesetz und Lichtquantenhypothese," Zeitschrift fur Physik (in German), vol. 26, pp. 178-181, 1924   DOI
27 C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, pp. 273-278, 2004.
28 W. L. McMillan, "Transition Temperature of Strong-Coupled Superconductors," Phys. Rev., vol. 167, pp. 331, 1968.   DOI
29 F. London, "The λ-Phenomenon of liquid Helium and the Bose-Einstein degeneracy," Nature, vol. 141, pp. 643-644, 1938.   DOI
30 P. A. M. Dirac, "On the Theory of Quantum Mechanics," Proceedings of the Royal Society A, vol. 112, pp. 661-677, 1926.