• 제목/요약/키워드: iterative parameter-control algorithm

Search Result 25, Processing Time 0.018 seconds

New Motor Parameter Estimation Method of Surface-mounted Permanent Magnet Motors (표면 부착형 영구자석 전동기의 새로운 상수 추정 방법)

  • Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • This paper proposes a new motor parameter estimation method. Because the proposed method is based on difference equations, it does not affect the error in the voltage magnitude so called dead-time effect. Information on the motor constant may be needed to improve the motor control performance. For example, a control technique called DTC (Direct Torque Control) requires a motor constant when calculating the torque and flux magnitude. As another example, in the case of predictive control, information on the motor parameters is required to generate voltage references. Because the constant of the motor fluctuates according to the driving environment, it is essential to estimate the correct motor constant because the control performance is degraded when incorrect motor information is used. In the proposed scheme, the motor constant estimated based on the voltage difference equation is obtained using the RLS (Recursive Least Square) technique. The RLS algorithm is applied to obtain the value through an iterative calculation so that the estimation performance is robust to noise. The simulation results carried out with surface mounted permanent magnet motors confirmed the validity of the proposed method.

A Study on the Development of Robust control Algorithm for Stable Robot Locomotion (안정된 로봇걸음걸이를 위한 견실한 제어알고리즘 개발에 관한 연구)

  • Hwang, Won-Jun;Yoon, Dae-Sik;Koo, Young-Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 2015
  • This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.

Effective Iterative Control Method to Reduce the Decoding Delay for Turbo TCM Decoder (터보 TCM 디코더의 복호 지연을 감소시키기 위한 효율적인 반복복호 제어기법)

  • 김순영;김정수;장진수;이문호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.816-822
    • /
    • 2003
  • In this paper, we propose an efficient iteration control method with low complexity for Turbo TCM(Turbo Trellis Coded Modulation) decoding which will be used fur power-limited environment. As the decoding approaches the performance limit of a given turbo code, any further iteration results in very little improvement. Therefore, it is important to devise an efficient criterion to stop the iteration process and prevent unnecessary computations and decoding delay. This paper presents an efficient algorithm for turbo TCM decoding that can greatly reduce the delay and iteration number. The proposed method use adaptive iteration number according to the criterion using the extrinsic information variance parameter in turbo TCM decoding process. The simulation results show that the proposed technique effectively can reduce the decoding delay and computation with very little performance degradation.

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

Gaussian Noise Reduction Method using Adaptive Total Variation : Application to Cone-Beam Computed Tomography Dental Image (적응형 총변이 기법을 이용한 가우시안 잡음 제거 방법: CBCT 치과 영상에 적용)

  • Kim, Joong-Hyuk;Kim, Jung-Chae;Kim, Kee-Deog;Yoo, Sun-K.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.29-38
    • /
    • 2012
  • The noise generated in the process of obtaining the medical image acts as the element obstructing the image interpretation and diagnosis. To restore the true image from the image polluted from the noise, the total variation optimization algorithm was proposed by the R.O. F (L.Rudin, S Osher, E. Fatemi). This method removes the noise by fitting the balance of the regularity and fidelity. However, the blurring phenomenon of the border area generated in the process of performing the iterative operation cannot be avoided. In this paper, we propose the adaptive total variation method by mapping the control parameter to the proposed transfer function for minimizing boundary error. The proposed transfer function is determined by the noise variance and the local property of the image. The proposed method was applied to 464 tooth images. To evaluate proposed method performance, PSNR which is a indicator of signal and noise's signal power ratio was used. The experimental results show that the proposed method has better performance than other methods.