• Title/Summary/Keyword: iterative detection

Search Result 209, Processing Time 0.025 seconds

Sensor Deployment Simulator for Designing Sensor Fields (센서 필드 설계를 위한 배치 시뮬레이터)

  • Kwon, Oh-Heum;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.354-365
    • /
    • 2013
  • Node deployment is one of the important problems in achieving good quality of service in wireless sensor network. The purpose of this paper is to develop an interactive system that supports user's decision makings in designing sensor fields. The system provides grid-based initial deployment algorithm supporting three types of node deployment pattern, area-fill, path-cover, and barrier-cover deployment pattern. After initial deployment, an iterative refinement algorithm can be applied, which takes care of the irregularity of the deployment area and the heterogeneity of sensors. The proposed system helps users to effectively deploy nodes in the sensor field, analyse the detection performance of the deployment, and perform network simulations. The developed system can be utilized as a part of the development environment of the surveillance sensor network system.

Marker-less Calibration of Multiple Kinect Devices for 3D Environment Reconstruction (3차원 환경 복원을 위한 다중 키넥트의 마커리스 캘리브레이션)

  • Lee, Suwon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1142-1148
    • /
    • 2019
  • Reconstruction of the three-dimensional (3D) environment is a key aspect of augmented reality and augmented virtuality, which utilize and incorporate a user's surroundings. Such reconstruction can be easily realized by employing a Kinect device. However, multiple Kinect devices are required for enhancing the reconstruction density and for spatial expansion. While employing multiple Kinect devices, they must be calibrated with respect to each other in advance, and a marker is often used for this purpose. However, a marker needs to be placed at each calibration, and the result of marker detection significantly affects the calibration accuracy. Therefore, a user-friendly, efficient, accurate, and marker-less method for calibrating multiple Kinect devices is proposed in this study. The proposed method includes a joint tracking algorithm for approximate calibration, and the obtained result is further refined by applying the iterative closest point algorithm. Experimental results indicate that the proposed method is a convenient alternative to conventional marker-based methods for calibrating multiple Kinect devices. Hence, the proposed method can be incorporated in various applications of augmented reality and augmented virtuality that require 3D environment reconstruction by employing multiple Kinect devices.

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

Stackelberg Game between Multi-Leader and Multi-Follower for Detecting Black Hole and Warm Hole Attacks In WSN

  • S.Suganthi;D.Usha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.159-167
    • /
    • 2023
  • Objective: • To detect black hole and warm hole attacks in wireless sensor networks. • To give a solution for energy depletion and security breach in wireless sensor networks. • To address the security problem using strategic decision support system. Methods: The proposed stackelberg game is used to make the spirited relations between multi leaders and multi followers. In this game, all cluster heads are acts as leaders, whereas agent nodes are acts as followers. The game is initially modeled as Quadratic Programming and also use backtracking search optimization algorithm for getting threshold value to determine the optimal strategies of both defender and attacker. Findings: To find optimal payoffs of multi leaders and multi followers are based on their utility functions. The attacks are easily detected based on some defined rules and optimum results of the game. Finally, the simulations are executed in matlab and the impacts of detection of black hole and warm hole attacks are also presented in this paper. Novelty: The novelty of this study is to considering the stackelberg game with backtracking search optimization algorithm (BSOA). BSOA is based on iterative process which tries to minimize the objective function. Thus we obtain the better optimization results than the earlier approaches.

Efficient Outlier Detection of the Water Temperature Monitoring Data (수온 관측 자료의 효율적인 이상 자료 탐지)

  • Cho, Hongyeon;Jeong, Shin Taek;Ko, Dong Hui;Son, Kyeong-Pyo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.285-291
    • /
    • 2014
  • The statistical information of the coastal water temperature monitoring data can be biased because of outliers and missing intervals. Though a number of outlier detection methods have been developed, their applications are very limited to the in-situ monitoring data because of the assumptions of the a prior information of the outliers and no-missing condition, and the excessive computational time for some methods. In this study, the practical robust method is developed that can be efficiently and effectively detect the outliers in case of the big-data. This model is composed of these two parts, one part is the construction part of the approximate components of the monitoring data using the robust smoothing and data re-sampling method, and the other part is the main iterative outlier detection part using the detailed components of the data estimated by the approximate components. This model is tested using the two-years 5-minute interval water temperature data in Lake Saemangeum. It can be estimated that the outlier proportion of the data is about 1.6-3.7%. It shows that most of the outliers in the data are detected and removed with satisfaction by the model. In order to effectively detect and remove the outliers, the outlier detection using the long-span smoothing should be applied earlier than that using the short-span smoothing.

Automatic Sagittal Plane Detection for the Identification of the Mandibular Canal (치아 신경관 식별을 위한 자동 시상면 검출법)

  • Pak, Hyunji;Kim, Dongjoon;Shin, Yeong-Gil
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.31-37
    • /
    • 2020
  • Identification of the mandibular canal path in Computed Tomography (CT) scans is important in dental implantology. Typically, prior to the implant planning, dentists find a sagittal plane where the mandibular canal path is maximally observed, to manually identify the mandibular canal. However, this is time-consuming and requires extensive experience. In this paper, we propose a deep-learning-based framework to detect the desired sagittal plane automatically. This is accomplished by utilizing two main techniques: 1) a modified version of the iterative transformation network (ITN) method for obtaining initial planes, and 2) a fine searching method based on a convolutional neural network (CNN) classifier for detecting the desirable sagittal plane. This combination of techniques facilitates accurate plane detection, which is a limitation of the stand-alone ITN method. We have tested on a number of CT datasets to demonstrate that the proposed method can achieve more satisfactory results compared to the ITN method. This allows dentists to identify the mandibular canal path efficiently, providing a foundation for future research into more efficient, automatic mandibular canal detection methods.

Moving Object Detection Algorithm for Surveillance System (무인 감시 시스템을 위한 이동물체 검출 알고리즘)

  • Lim Kang-mo;Lee Joo-shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.44-53
    • /
    • 2005
  • In this paper, a improved moving object detection algorithm for stable performance of surveillance system in case of iterative moving in limited area and rapidly illuminance change in background scene is proposed. The proposed algorithm is that background scenes are sampled for initializing background image then the sampled fames are divided by block and sum of graylevel value for each block pixel was calculated, respectively. The initialization of background image is that background frame is respectively reconstructed with selecting only the maximum graylevel value and the minimum graylevel value of blocks located at same position between adjacent frames, then reference images of background are set by the reconstructed background images. Moving object detecting is that the current image frame is divided by block then sum of graylevel value for each block pixel is calculated. If the calculated value is out of graylevel range of the initialized two reference images, it is decided with moving objects block, otherwise it is decided background. The evaluated results is that the error rate of the proposed method is less than the error rate of the existing methods from $0.01{\%}$ to $20.33{\%}$ and the detection rate of the proposed method is better than the existing methods from $0.17{\%}\;to\;22.83{\%}$.

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.

A Study on the Possibility of Pancreas Detection through Extraction of Effective Atomic Number using a Simulation such as Dual-energy CT (이중에너지 CT와 같은 시뮬레이션을 이용한 유효원자번호 추출을 통한 췌장 검출 가능성 연구)

  • Son, Ki-Hong;Lee, Soo-Yeul;Chung, Myung-Ae;Kim, Dae-Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.537-543
    • /
    • 2022
  • The purpose of this simulation study was to evaluate the possibility of pancreas detection through effective atomic number information using dual-energy computed tomography(CT). The effective atomic number of 10 tissue-equivalent materials were estimated through stoichiometric calibration. For stoichiometric calibration, HU values at low-energy (80 kV) and high-energy (140 kV) for 10 tissue-equivalent materials were used. Based on this method, the effective atomic number image of the tissue-equivalent material was extracted through an iterative algorithm. According to the results, the attenuation ratio in accordance with the effective atomic number was estimated to have an R2 value of 0.9999, and the effective atomic number of Pancreas, Water, Liver, Blood, Spongiosa, and Cortical bone was overall within 1% accuracy compared to the theoretical value. Conventional pancreatic cancer examination uses a contrast medium, so there is a possibility of potential side effects of the contrast medium. In order to solve this problem, it is thought that it will be possible to contribute to an accurate and safe examination by extracting the effective atomic number using dual-energy CT without contrast enhancement. Based on this study, future research will be conducted on the detection of pancreatic cancer using the HU value of pancreatic cancer based on clinical images.

Unsupervised Classification of Landsat-8 OLI Satellite Imagery Based on Iterative Spectral Mixture Model (자동화된 훈련 자료를 활용한 Landsat-8 OLI 위성영상의 반복적 분광혼합모델 기반 무감독 분류)

  • Choi, Jae Wan;Noh, Sin Taek;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.53-61
    • /
    • 2014
  • Landsat OLI satellite imagery can be applied to various remote sensing applications, such as generation of land cover map, urban area analysis, extraction of vegetation index and change detection, because it includes various multispectral bands. In addition, land cover map is an important information to monitor and analyze land cover using GIS. In this paper, land cover map is generated by using Landsat OLI and existing land cover map. First, training dataset is obtained using correlation between existing land cover map and unsupervised classification result by K-means, automatically. And then, spectral signatures corresponding to each class are determined based on training data. Finally, abundance map and land cover map are generated by using iterative spectral mixture model. The experiment is accomplished by Landsat OLI of Cheongju area. It shows that result by our method can produce land cover map without manual training dataset, compared to existing land cover map and result by supervised classification result by SVM, quantitatively and visually.