In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.
Purpose: The purpose of this study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying Filtered Back Projection(FBP), the existing test method, and Adaptive Statistical Iterative Reconstruction(ASIR) with different values of tube voltage during the Low Dose Computed Tomography(LDCT). Materials and Methods: With the image reconstruction method as basis, Chest Phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of Tube Voltage (100kVp, 120kVp). For image evaluation, Back ground noise, Signal to Noise ratio(SNR) and Contrast to Noise ratio(CNR) were measured, and, for dose evaluation, CTDIvol and DLP were measured respectively. The statistical analysis was tested with SPSS(ver. 22.0), followed by ANOVA Test conducted after normality test and homogeneity test. (p<0.05). Results: In terms of image evaluation, there was no outstanding difference in Ascending Aorta(AA) SNR and Infraspinatus Muscle(IM) SNR with the different values of ASIR application(p<0.05), but a significant difference with the different amount of tube voltage(p>0.05). Also, there wasn't noticeable change in CNR with ASIR and different amount of Tube Voltage (p<0.05). However, in terms of dose evaluation, CTDIvol and DLP showed contrasting results(p<0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120kVp were 2.6mGy with No-ASIR and 2.17mGy with 20%-ASIR respectively, decreased by 0.43mGy, and the values with 100kVp were 1.61mGy with No-ASIR and 1.34mGy with 20%-ASIR, decreased by 0.27mGy. In terms of DLP, the measured values with 120kVp were $103.21mGy{\cdot}cm$ with No-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$(about 16.7%), and the values with 100kVp were $63.84mGy{\cdot}cm$ with No-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$(about 16.7%). Conclusion: At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise. For the future, through the result of the experiment, it is considered that the method above would be recommended for follow-up patients or those who get health checkup as long as there is no interference on the process of diagnosis due to the characteristics of Low Dose examination.
Kim, Da Jung;Kim, Cherry;Shin, Chol;Lee, Seung Ku;Ko, Chang Sub;Lee, Ki Yeol
Korean Journal of Radiology
/
v.19
no.6
/
pp.1187-1195
/
2018
Objective: To compare correlations between pulmonary function test (PFT) results and different reconstruction algorithms and to suggest the optimal reconstruction protocol for computed tomography (CT) quantification of low lung attenuation areas and airways in healthy individuals. Materials and Methods: A total of 259 subjects with normal PFT and chest CT results were included. CT scans were reconstructed using filtered back projection, hybrid-iterative reconstruction, and model-based IR (MIR). For quantitative analysis, the emphysema index (EI) and wall area percentage (WA%) were determined. Subgroup analysis according to smoking history was also performed. Results: The EIs of all the reconstruction algorithms correlated significantly with the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (all p < 0.001). The EI of MIR showed the strongest correlation with FEV1/FVC (r = -0.437). WA% showed a significant correlation with FEV1 in all the reconstruction algorithms (all p < 0.05) correlated significantly with FEV1/FVC for MIR only (p < 0.001). The WA% of MIR showed the strongest correlations with FEV1 (r = -0.205) and FEV1/FVC (r = -0.250). In subgroup analysis, the EI of MIR had the strongest correlation with PFT in both eversmoker and never-smoker subgroups, although there was no significant difference in the EI between the reconstruction algorithms. WA% of MIR showed a significantly thinner airway thickness than the other algorithms ($49.7{\pm}7.6$ in ever-smokers and $49.5{\pm}7.5$ in never-smokers, all p < 0.001), and also showed the strongest correlation with PFT in both ever-smoker and never-smoker subgroups. Conclusion: CT quantification of low lung attenuation areas and airways by means of MIR showed the strongest correlation with PFT results among the algorithms used, in normal subjects.
Purpose To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. Materials and Methods We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction (ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided into four subgroups according to the patients' ages. Clinical and dose-related data were reviewed. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharpness, artifact, acceptability, and unfamiliar texture change were evaluated and compared. Results The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, improvement of GM-WM differentiation, and improvement of sharpness was noted among strength levels of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did not show a significant difference among the adapted levels of DLIR. Conclusion Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image noise. Modification is needed while processing artifacts.
Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.
Kim, Sang Youn;Cho, Jeong Yeon;Lee, Joongyub;Hwang, Sung Il;Moon, Min Hoan;Lee, Eun Ju;Hong, Seong Sook;Kim, Chan Kyo;Kim, Kyeong Ah;Park, Sung Bin;Sung, Deuk Jae;Kim, Yongsoo;Kim, You Me;Jung, Sung Il;Rha, Sung Eun;Kim, Dong Won;Lee, Hyun;Shim, Youngsup;Hwang, Inpyeong;Woo, Sungmin;Choi, Hyuck Jae
Korean Journal of Radiology
/
v.19
no.6
/
pp.1119-1129
/
2018
Objective: To compare the image quality of low-tube-voltage and low-iodine-concentration-contrast-medium (LVLC) computed tomography urography (CTU) with iterative reconstruction (IR) with that of conventional CTU. Materials and Methods: This prospective, multi-institutional, randomized controlled trial was performed at 16 hospitals using CT scanners from various vendors. Patients were randomly assigned to the following groups: 1) the LVLC-CTU (80 kVp and 240 mgI/mL) with IR group and 2) the conventional CTU (120 kVp and 350 mgI/mL) with filtered-back projection group. The overall diagnostic acceptability, sharpness, and noise were assessed. Additionally, the mean attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) in the urinary tract were evaluated. Results: The study included 299 patients (LVLC-CTU group: 150 patients; conventional CTU group: 149 patients). The LVLC-CTU group had a significantly lower effective radiation dose ($5.73{\pm}4.04$ vs. $8.43{\pm}4.38mSv$) compared to the conventional CTU group. LVLC-CTU showed at least standard diagnostic acceptability (score ${\geq}3$), but it was non-inferior when compared to conventional CTU. The mean attenuation value, mean SNR, CNR, and FOM in all pre-defined segments of the urinary tract were significantly higher in the LVLC-CTU group than in the conventional CTU group. Conclusion: The diagnostic acceptability and quantitative image quality of LVLC-CTU with IR are not inferior to those of conventional CTU. Additionally, LVLC-CTU with IR is beneficial because both radiation exposure and total iodine load are reduced.
Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
The Korean Journal of Nuclear Medicine Technology
/
v.15
no.1
/
pp.17-24
/
2011
Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.
Purpose: RBC blood pool SPECT has been used to diagnose focal liver lesion such as hemangioma owing to its high specificity. However, low spatial resolution is a major limitation of this modality. Recently, ordered subset expectation maximization (OSEM) has been introduced to obtain tomographic images for clinical application. We compared this new modified iterative reconstruction method, OSEM with conventional filtered back projection (FBP) in imaging of liver hemangioma. Materials and Methods: Sixty four projection data were acquired using dual head gamma camera in 28 lesions of 24 patients with cavernous hemangioma of liver and these raw data were transferred to LINUX based personal computer. After the replacement of header file as interfile, OSEM was performed under various conditions of subsets (1,2,4,8,16, and 32) and iteration numbers (1,2,4,8, and 16) to obtain the best setting for liver imaging. The best condition for imaging in our investigation was considered to be 4 iterations and 16 subsets. After then, all the images were processed by both FBP and OSEM. Three experts reviewed these images without any information. Results: According to blind review of 28 lesions, OSEM images revealed at least same or better image quality than those of FBP in nearly all cases. Although there showed no significant difference in detection of large lesions more than 3 cm, 5 lesions with 1.5 to 3 cm in diameter were detected by OSEM only. However, both techniques failed to depict 4 cases of small lesions less than 1.5 cm. Conclusion: OSEM revealed better contrast and define in depiction of liver hemangioma as well as higher sensitivity in detection of small lesions. Furthermore this reconstruction method dose not require high performance computer system or long reconstruction time, therefore OSEM is supposed to be good method that can be applied to RBC blood pool SPECT for the diagnosis of liver hemangioma.
Do, Yong Ho;Song, Ho Jun;Lee, Hyung Jin;Lee, Hong Jae;Kim, Jin Eui
The Korean Journal of Nuclear Medicine Technology
/
v.16
no.2
/
pp.29-34
/
2012
Purpose : Presently, hardwares and softwares for reducing radiation exposure are continually developed for PET/CT examination. Purpose of this study is to evaluate effectiveness of reducing radiation exposure dose of CT and SUV changes of PET when applied each kernel to ACCT (Attenuation Correction Computed Tomography) according to adopted IRIS (Iterative Reconstruction in Image Space) software. Materials and Methods : Biograph mCT (Siemens, Germany) was used as a PET/CT scanner. Using AAPM CT performance phantom, from standard (120 kVp, 100 mAs), 7 scans were conducted by reducing 15 mAs each. After image reconstruction by FBP (Filtered Back Projection) and IRIS, noise and spatial resolution were evaluated. The same method was applied to anthropomorphic chest phantom and acquired images were compared. NEMA IEC body phantom was used for SUV evaluation. Injected dose rate for hot sphere (hot) and background cylinder (BKG) were 1:8. CT dose condition (120 kVp, 50 mAs) was the same for each scan and PET scan durations were 1, 2, 3 and 4min. After scanning, each kernel of IRIS was applied to ACCT. And PET images were reconstructed by ACCT adopted IRIS for comparing SUV changes. Results : AAPM phantom test for noise evaluation, SD for FBP 100 mAs, IRIS 55 mAs were 8.8 and 8.9. FBP 85 mAs, IRIS 40 mAs were 9.5 and 9.7. FBP 70 mAs, IRIS 25 mAs were 11.9 and 11.1. Above mAs condition for FBP and IRIS, SD showed similar values. And for spatial resolution test, there was no significant difference. For chest phantom test, when applied the same mAs and kernel to both of FBP and IRIS, every applied kernels showed reduced noise. Lower mAs and higher kernel value showed higher noise reduction. There was no considerable difference only except for I70 very sharp kernel for SUV comparison using NEMA IEC body phantom. Conclusion : In this study, low mAs (55 mAs) applied IRIS and standard mAs (100 mAs) applied FBP showed similar noise. And only except for I70 kernel, there was no significant SUV changes. It is possible to reduce needless radiation exposure and acquire better image quality than FBP's through applying appropriate kernel of IRIS to PET/CT.
Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
Korean Journal of Radiology
/
v.24
no.4
/
pp.294-304
/
2023
Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.