• Title/Summary/Keyword: iterative back-projection

Search Result 31, Processing Time 0.031 seconds

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

A study of image evaluation and exposure dose with the application of Tube Voltage and ASIR of Low dose CT Using Chest Phantom (흉부 Phantom을 이용한 Low Dose CT의 관전압과 ASIR(Adaptive Statistical Iterative Reconstruction)적용에 따른 영상평가 및 피폭선량에 관한 연구)

  • Hwang, Hyeseong;Kim, Nuri;Jeong, Yoonji;Goo, Eunhoe;Kim, Kijeong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.2
    • /
    • pp.9-14
    • /
    • 2014
  • Purpose: The purpose of this study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying Filtered Back Projection(FBP), the existing test method, and Adaptive Statistical Iterative Reconstruction(ASIR) with different values of tube voltage during the Low Dose Computed Tomography(LDCT). Materials and Methods: With the image reconstruction method as basis, Chest Phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of Tube Voltage (100kVp, 120kVp). For image evaluation, Back ground noise, Signal to Noise ratio(SNR) and Contrast to Noise ratio(CNR) were measured, and, for dose evaluation, CTDIvol and DLP were measured respectively. The statistical analysis was tested with SPSS(ver. 22.0), followed by ANOVA Test conducted after normality test and homogeneity test. (p<0.05). Results: In terms of image evaluation, there was no outstanding difference in Ascending Aorta(AA) SNR and Infraspinatus Muscle(IM) SNR with the different values of ASIR application(p<0.05), but a significant difference with the different amount of tube voltage(p>0.05). Also, there wasn't noticeable change in CNR with ASIR and different amount of Tube Voltage (p<0.05). However, in terms of dose evaluation, CTDIvol and DLP showed contrasting results(p<0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120kVp were 2.6mGy with No-ASIR and 2.17mGy with 20%-ASIR respectively, decreased by 0.43mGy, and the values with 100kVp were 1.61mGy with No-ASIR and 1.34mGy with 20%-ASIR, decreased by 0.27mGy. In terms of DLP, the measured values with 120kVp were $103.21mGy{\cdot}cm$ with No-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$(about 16.7%), and the values with 100kVp were $63.84mGy{\cdot}cm$ with No-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$(about 16.7%). Conclusion: At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise. For the future, through the result of the experiment, it is considered that the method above would be recommended for follow-up patients or those who get health checkup as long as there is no interference on the process of diagnosis due to the characteristics of Low Dose examination.

  • PDF

Impact of Model-Based Iterative Reconstruction on the Correlation between Computed Tomography Quantification of a Low Lung Attenuation Area and Airway Measurements and Pulmonary Function Test Results in Normal Subjects

  • Kim, Da Jung;Kim, Cherry;Shin, Chol;Lee, Seung Ku;Ko, Chang Sub;Lee, Ki Yeol
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1187-1195
    • /
    • 2018
  • Objective: To compare correlations between pulmonary function test (PFT) results and different reconstruction algorithms and to suggest the optimal reconstruction protocol for computed tomography (CT) quantification of low lung attenuation areas and airways in healthy individuals. Materials and Methods: A total of 259 subjects with normal PFT and chest CT results were included. CT scans were reconstructed using filtered back projection, hybrid-iterative reconstruction, and model-based IR (MIR). For quantitative analysis, the emphysema index (EI) and wall area percentage (WA%) were determined. Subgroup analysis according to smoking history was also performed. Results: The EIs of all the reconstruction algorithms correlated significantly with the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (all p < 0.001). The EI of MIR showed the strongest correlation with FEV1/FVC (r = -0.437). WA% showed a significant correlation with FEV1 in all the reconstruction algorithms (all p < 0.05) correlated significantly with FEV1/FVC for MIR only (p < 0.001). The WA% of MIR showed the strongest correlations with FEV1 (r = -0.205) and FEV1/FVC (r = -0.250). In subgroup analysis, the EI of MIR had the strongest correlation with PFT in both eversmoker and never-smoker subgroups, although there was no significant difference in the EI between the reconstruction algorithms. WA% of MIR showed a significantly thinner airway thickness than the other algorithms ($49.7{\pm}7.6$ in ever-smokers and $49.5{\pm}7.5$ in never-smokers, all p < 0.001), and also showed the strongest correlation with PFT in both ever-smoker and never-smoker subgroups. Conclusion: CT quantification of low lung attenuation areas and airways by means of MIR showed the strongest correlation with PFT results among the algorithms used, in normal subjects.

Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality (소아용 두부 컴퓨터단층촬영에서 딥러닝 영상 재구성 적용: 영상 품질에 대한 고찰)

  • Nim Lee;Hyun-Hae Cho;So Mi Lee;Sun Kyoung You
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.240-252
    • /
    • 2023
  • Purpose To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. Materials and Methods We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction (ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided into four subgroups according to the patients' ages. Clinical and dose-related data were reviewed. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharpness, artifact, acceptability, and unfamiliar texture change were evaluated and compared. Results The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, improvement of GM-WM differentiation, and improvement of sharpness was noted among strength levels of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did not show a significant difference among the adapted levels of DLIR. Conclusion Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image noise. Modification is needed while processing artifacts.

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.

Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography

  • Kim, Sang Youn;Cho, Jeong Yeon;Lee, Joongyub;Hwang, Sung Il;Moon, Min Hoan;Lee, Eun Ju;Hong, Seong Sook;Kim, Chan Kyo;Kim, Kyeong Ah;Park, Sung Bin;Sung, Deuk Jae;Kim, Yongsoo;Kim, You Me;Jung, Sung Il;Rha, Sung Eun;Kim, Dong Won;Lee, Hyun;Shim, Youngsup;Hwang, Inpyeong;Woo, Sungmin;Choi, Hyuck Jae
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1119-1129
    • /
    • 2018
  • Objective: To compare the image quality of low-tube-voltage and low-iodine-concentration-contrast-medium (LVLC) computed tomography urography (CTU) with iterative reconstruction (IR) with that of conventional CTU. Materials and Methods: This prospective, multi-institutional, randomized controlled trial was performed at 16 hospitals using CT scanners from various vendors. Patients were randomly assigned to the following groups: 1) the LVLC-CTU (80 kVp and 240 mgI/mL) with IR group and 2) the conventional CTU (120 kVp and 350 mgI/mL) with filtered-back projection group. The overall diagnostic acceptability, sharpness, and noise were assessed. Additionally, the mean attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) in the urinary tract were evaluated. Results: The study included 299 patients (LVLC-CTU group: 150 patients; conventional CTU group: 149 patients). The LVLC-CTU group had a significantly lower effective radiation dose ($5.73{\pm}4.04$ vs. $8.43{\pm}4.38mSv$) compared to the conventional CTU group. LVLC-CTU showed at least standard diagnostic acceptability (score ${\geq}3$), but it was non-inferior when compared to conventional CTU. The mean attenuation value, mean SNR, CNR, and FOM in all pre-defined segments of the urinary tract were significantly higher in the LVLC-CTU group than in the conventional CTU group. Conclusion: The diagnostic acceptability and quantitative image quality of LVLC-CTU with IR are not inferior to those of conventional CTU. Additionally, LVLC-CTU with IR is beneficial because both radiation exposure and total iodine load are reduced.

The Evaluation of Reconstructed Images in 3D OSEM According to Iteration and Subset Number (3D OSEM 재구성 법에서 반복연산(Iteration) 횟수와 부분집합(Subset) 개수 변경에 따른 영상의 질 평가)

  • Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.

  • PDF

Increase of Tc-99m RBC SPECT Sensitivity for Small Liver Hemangioma using Ordered Subset Expectation Maximization Technique (Tc-99m RBC SPECT에서 Ordered Subset Expectation Maximization 기법을 이용한 작은 간 혈관종 진단 예민도의 향상)

  • Jeon, Tae-Joo;Bong, Jung-Kyun;Kim, Hee-Joung;Kim, Myung-Jin;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.344-356
    • /
    • 2002
  • Purpose: RBC blood pool SPECT has been used to diagnose focal liver lesion such as hemangioma owing to its high specificity. However, low spatial resolution is a major limitation of this modality. Recently, ordered subset expectation maximization (OSEM) has been introduced to obtain tomographic images for clinical application. We compared this new modified iterative reconstruction method, OSEM with conventional filtered back projection (FBP) in imaging of liver hemangioma. Materials and Methods: Sixty four projection data were acquired using dual head gamma camera in 28 lesions of 24 patients with cavernous hemangioma of liver and these raw data were transferred to LINUX based personal computer. After the replacement of header file as interfile, OSEM was performed under various conditions of subsets (1,2,4,8,16, and 32) and iteration numbers (1,2,4,8, and 16) to obtain the best setting for liver imaging. The best condition for imaging in our investigation was considered to be 4 iterations and 16 subsets. After then, all the images were processed by both FBP and OSEM. Three experts reviewed these images without any information. Results: According to blind review of 28 lesions, OSEM images revealed at least same or better image quality than those of FBP in nearly all cases. Although there showed no significant difference in detection of large lesions more than 3 cm, 5 lesions with 1.5 to 3 cm in diameter were detected by OSEM only. However, both techniques failed to depict 4 cases of small lesions less than 1.5 cm. Conclusion: OSEM revealed better contrast and define in depiction of liver hemangioma as well as higher sensitivity in detection of small lesions. Furthermore this reconstruction method dose not require high performance computer system or long reconstruction time, therefore OSEM is supposed to be good method that can be applied to RBC blood pool SPECT for the diagnosis of liver hemangioma.

The Study of Reducing Radiation Exposure Dose and Comparing SUV According to Applied IRIS (Iterative Reconstruction in Image Space) for PET/CT (PET/CT 검사 시 IRIS (Iterative Reconstruction in Image Space) 적용에 따른 CT 피폭선량 감소와 PET SUV 비교 연구)

  • Do, Yong Ho;Song, Ho Jun;Lee, Hyung Jin;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.29-34
    • /
    • 2012
  • Purpose : Presently, hardwares and softwares for reducing radiation exposure are continually developed for PET/CT examination. Purpose of this study is to evaluate effectiveness of reducing radiation exposure dose of CT and SUV changes of PET when applied each kernel to ACCT (Attenuation Correction Computed Tomography) according to adopted IRIS (Iterative Reconstruction in Image Space) software. Materials and Methods : Biograph mCT (Siemens, Germany) was used as a PET/CT scanner. Using AAPM CT performance phantom, from standard (120 kVp, 100 mAs), 7 scans were conducted by reducing 15 mAs each. After image reconstruction by FBP (Filtered Back Projection) and IRIS, noise and spatial resolution were evaluated. The same method was applied to anthropomorphic chest phantom and acquired images were compared. NEMA IEC body phantom was used for SUV evaluation. Injected dose rate for hot sphere (hot) and background cylinder (BKG) were 1:8. CT dose condition (120 kVp, 50 mAs) was the same for each scan and PET scan durations were 1, 2, 3 and 4min. After scanning, each kernel of IRIS was applied to ACCT. And PET images were reconstructed by ACCT adopted IRIS for comparing SUV changes. Results : AAPM phantom test for noise evaluation, SD for FBP 100 mAs, IRIS 55 mAs were 8.8 and 8.9. FBP 85 mAs, IRIS 40 mAs were 9.5 and 9.7. FBP 70 mAs, IRIS 25 mAs were 11.9 and 11.1. Above mAs condition for FBP and IRIS, SD showed similar values. And for spatial resolution test, there was no significant difference. For chest phantom test, when applied the same mAs and kernel to both of FBP and IRIS, every applied kernels showed reduced noise. Lower mAs and higher kernel value showed higher noise reduction. There was no considerable difference only except for I70 very sharp kernel for SUV comparison using NEMA IEC body phantom. Conclusion : In this study, low mAs (55 mAs) applied IRIS and standard mAs (100 mAs) applied FBP showed similar noise. And only except for I70 kernel, there was no significant SUV changes. It is possible to reduce needless radiation exposure and acquire better image quality than FBP's through applying appropriate kernel of IRIS to PET/CT.

  • PDF

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.