• 제목/요약/키워드: isotropic point

검색결과 117건 처리시간 0.024초

유전적분형 물성방정식에 근거한 선형 점탄성문제의 시간영역 유한요소해석 (Time-domain Finite Element Formulation for Linear Viscoelastic Analysis Based on a Hereditary Type Constitutive Law)

  • 심우진;이호섭
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1429-1437
    • /
    • 1992
  • 본 연구에서는 이완형 물성방정식을 바탕으로 하며 프와송 비가 일정하다는 가정을 하지 않는다. 또한 점탄성 지배방정식에 변분원리를 적용하고 유도되어진 식 에 유한요소해법을 사용하여 시스템 기본해석을 위한 연립방정식을 유도한다. 이와 함께 점탄성 물성함수의 유도 및 응력계산을 위한 공식화 과정도 설명한다. 제시된 방법론의 타당성 및 정확성을 보이기 위해서 평면응력 및 평면변형 문제의 변위 및 응력을 수치해석하여 이론해와 비교 검토하며, 아울러 시간증분의 변화와 Gauss poi- nts수가 수치정확도에 끼치는 영향을 조사한다.

Damage detection using the improved Kullback-Leibler divergence

  • Tian, Shaohua;Chen, Xuefeng;Yang, Zhibo;He, Zhengjia;Zhang, Xingwu
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.291-308
    • /
    • 2013
  • Structural health monitoring is crucial to maintain the structural performance safely. Moreover, the Kullback-Leibler divergence (KLD) is applied usually to asset the similarity between different probability density functions in the pattern recognition. In this study, the KLD is employed to detect the damage. However the asymmetry of the KLD is a shortcoming for the damage detection, to overcoming this shortcoming, two other divergences and one statistic distribution are proposed. Then the damage identification by the KLD and its three descriptions from the symmetric point of view is investigated. In order to improve the reliability and accuracy of the four divergences, the gapped smoothing method (GSM) is adopted. On the basis of the damage index approach, the new damage index (DI) for detect damage more accurately based on the four divergences is developed. In the last, the grey relational coefficient and hypothesis test (GRCHT) is utilized to obtain the more precise damage identification results. Finally, a clear remarkable improvement can be observed. To demonstrate the feasibility and accuracy of the proposed method, examples of an isotropic beam with different damage scenarios are employed so as to check the present approaches numerically. The final results show that the developed approach successfully located the damaged region in all cases effect and accurately.

Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector

  • Ramadhan, Revink A.;Abdullah, Khairi MS.
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.462-469
    • /
    • 2018
  • The background spectrum of a $3^{{\prime}{\prime}}{\times}3^{{\prime}{\prime}}$ NaI(Tl) well-type scintillation SILENA detector was measured without shielding, in 6 cm thick lead shielding, and with 2 mm thick electrolytic copper covering the detector inside the lead shielding. The relative remaining background of the lead shield lined with copper was found to be ideal for low-level environmental radioactive spectroscopy. The background total count rate in the (20-2160 KeV) was reduced 28.7 times by the lead and 29 times by the Cu + Pb shielding. The effective reduction of background (1.04) by the copper mainly appeared in the energy range from X-ray up to 500 KeV, while for the total energy range the ratio is 1.01 relative to the lead only. In addition, a strong relation between the full-energy peak absolute efficiency and the detector well height was found using gamma-ray isotropic radiation point sources placed inside the detector well. The full-energy peak efficiency at a midpoint of the well (at 2.5 cm) is three times greater than that on the detector surface. The energy calibrations and the resolution of any single energy line are independent of the locations of the gamma source inside or outside of the well.

The G. D. Q. method for the harmonic dynamic analysis of rotational shell structural elements

  • Viola, Erasmo;Artioli, Edoardo
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.789-817
    • /
    • 2004
  • This paper deals with the modal analysis of rotational shell structures by means of the numerical solution technique known as the Generalized Differential Quadrature (G. D. Q.) method. The treatment is conducted within the Reissner first order shear deformation theory (F. S. D. T.) for linearly elastic isotropic shells. Starting from a non-linear formulation, the compatibility equations via Principle of Virtual Works are obtained, for the general shell structure, given the internal equilibrium equations in terms of stress resultants and couples. These equations are subsequently linearized and specialized for the rotational geometry, expanding all problem variables in a partial Fourier series, with respect to the longitudinal coordinate. The procedure leads to the fundamental system of dynamic equilibrium equations in terms of the reference surface kinematic harmonic components. Finally, a one-dimensional problem, by means of a set of five ordinary differential equations, in which the only spatial coordinate appearing is the one along meridians, is obtained. This can be conveniently solved using an appropriate G. D. Q. method in meridional direction, yielding accurate results with an extremely low computational cost and not using the so-called "delta-point" technique.

Monitoring and control of multiple fraction laws with ring based composite structure

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.129-138
    • /
    • 2021
  • In present article, utilizing the Love shell theory with volume fraction laws for the cylindrical shells vibrations provides a governing equation for the distribution of material composition of material. Isotopic materials are the constituents of these rings. The position of a ring support has been taken along the radial direction. The Rayleigh-Ritz method with three different fraction laws gives birth to the shell frequency equation. Moreover, the effect of height- and length-to-radius ratio and angular speed is investigated. The results are depicted for circumferential wave number, length- and height-radius ratios with three laws. It is found that the backward and forward frequencies of exponential fraction law are sandwich between polynomial and trigonometric laws. It is examined that the backward and forward frequencies increase and decrease on increasing the ratio of height- and length-to-radius ratio. As the position of ring is enhanced for clamped simply supported and simply supported-simply supported boundary conditions, the frequencies go up. At mid-point, all the frequencies are higher and after that the frequencies decreases. The frequencies are same at initial and final stage and rust itself a bell shape. The shell is stabilized by ring supports to increase the stiffness and strength. Comparison is made for non-rotating and rotating cylindrical shell for the efficiency of the model. The results generated by computer software MATLAB.

A new approach for modeling pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of NPP accident

  • R.I. Bakin;A.A. Kiselev;E.A. Ilichev;A.M. Shvedov
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4715-4721
    • /
    • 2022
  • A comprehensive approach for modeling the pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of accident at NPP has been developed. It involves modeling the transport of radionuclides in the atmosphere using Lagrangian stochastic model, WRF meteorological processor with an ARW core and GFS data to obtain spatial distribution of radionuclides in the air at a given moment of time. Applying representation of the cloud as superposition of elementary sources of gamma radiation the pulse height spectra are calculated based on data on flux density from point isotropic sources and detector response function. The proposed approach allows us to obtain time-dependent spectra for any complex radionuclide composition of the release. The results of modeling the pulse height spectra of the scintillator detector NaI(Tl) Ø63×63 mm for a hypothetical severe accident at a NPP are presented.

Static stress analysis of multi-layered soils with twin tunnels by using finite and infinite elements

  • Yusuf Z. Yuksel;Seref D. Akbas
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.369-380
    • /
    • 2023
  • The aim of this paper is to investigate stress analysis of semi-infinite soils consisting of two layers with twin rectangular tunnels under static loads. The region close to the ground surface and tunnel modelled within finite elements. In order to use a more realistic model, the far region is modelled within infinite elements. The material model of the layered soil is considered as elastic and isotropic. In the finite element solution of the problem, two dimensional (2D) plane solid elements are used with sixteen-nodes rectangular finite and eight-nodes infinite shapes. Finite and infinite elements are ordered to be suitable for the tunnel and the soils. The governing equations of the problem are obtained by using the virtual work principle. In the numerical process, the five-point Gauss rule is used for the calculation of the integrations. In order to validate using methods, comparison studies are performed. In the numerical results, the stress distributions of the two layered soils containing twin rectangular tunnels presented. In the presented results, effects of the location of the tunnels on the stress distributions along soil depth are obtained and discussed in detail. The obtained results show that the locations of the tunnels are very effective on the stress distribution on the soils.

Parametric study of shear capacity of beams having GFRP reinforcement

  • Vora, Tarak P.;Shah, Bharat J.
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.183-190
    • /
    • 2022
  • A wide range of experimental bases and improved performance with different forms of Fiber Reinforced Polymer (FRP) have attracted researchers to produce eco-friendly and sustainable structures. The reinforced concrete (RC) beam's shear capacity has remained a complex phenomenon because of various parameters affecting. Design recommendations for the shear capacity of RC elements having FRP reinforcement need a more experimental database to improve design recommendations because almost all the recommendations replace different parameters with FRP's. Steel and FRP are fundamentally different materials. One is ductile and isotropic, whereas the other is brittle and orthotropic. This paper presents experimental results of the investigation on the beams with glass fiber reinforced polymer (GFRP) reinforcement as longitudinal bars and stirrups. Total twelve beams with GFRP reinforcement were prepared and tested. The cross-section of the beams was rectangular of size 230 × 300 mm, and the total length was 2000 mm with a span of 1800 mm. The beams are designed for simply-supported conditions with the two-point load as per specified load positions for different beams. Flexural reinforcement provided is for the balanced conditions as the beams were supposed to test for shear. Two main variables, such as shear span and spacing of stirrups, were incorporated. The beams were designed as per American Concrete Institute (ACI) ACI 440.1R-15. Relation of VExp./VPred. is derived with axial stiffness, span to depth ratio, and stirrups spacing, from which it is observed that current design provisions provide overestimation, particularly at lower stirrups spacing.

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.

Damage analysis of three-leg jacket platform due to ship collision

  • Jeremy Gunawan;Jessica Rikanti Tawekal;Ricky Lukman Tawekal;Eko Charnius Ilman
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.385-399
    • /
    • 2023
  • A collision between a ship and an offshore platform may result in structural damage and closure; therefore, damage analysis is required to ensure the platform's integrity. This paper presents a damage assessment of a three-legged jacket platform subjected to ship collisions using the industrial finite element program Bentley SACS. This study considers two ships with displacements of 2,000 and 5,000 tons and forward speeds of 2 and 6.17 meters per second. Ship collision loads are applied as a simplified point load on the center of the platform's legs at inclinations of 1/7 and 1/8; diagonal bracing is also included. The jacket platform is modelled as beam elements, with the exception of the impacted jacket members, which are modelled as nonlinear shell elements with elasto-plastic material and constant isotropic hardening to provide realistic dented behavior due to ship collision load. The structural response is investigated, including kinetic energy transfer, stress distribution, and denting damage. The simulation results revealed that the difference in leg inclination has no effect on the level of localized denting damage. However, it was discovered that a leg with a greater inclination (1/8) resists structural displacement more effectively and absorbs less kinetic energy. In this instance, the three-legged platform collapses due to the absorption of 27.30 MJ of energy. These results provide crucial insights for enhancing offshore platform resilience and safety in high-traffic maritime regions, with implications for design and collision mitigation strategies.