• Title/Summary/Keyword: isotope ratio.

Search Result 252, Processing Time 0.032 seconds

Improving Strontium Isotope Ratio Analysis Using MC-ICP-MS (다검출기 유도결합 플라즈마 질량분석기를 이용한 스트론튬 동위원소비 분석법 개선)

  • Lee, Sin-Woo;Park, Jaeseon;Park, Hyun-Woo;Hwang, Jong Yeon;Kim, Kumhee;Chung, Hyun-Mi;Choi, Jong-Woo
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.237-242
    • /
    • 2018
  • Strontium (Sr) commonly exists in rock, groundwater, soil, plants, and animals. The Sr isotope ratio offers important information as a tracer on nature because the Sr isotopic composition is not fractionated by any biological process in these ecosystems. Hence, Sr isotope ratio has been used in several studies on tracing the Sr source for contaminated sites and human migration. In this study, we developed a separation method for Sr content, and then improved Sr isotope analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A powdered rock standard (NIST 2710a) was used to determine the removal of interference elements (Rb and Ca) and the recovery rate of Sr content. The results ranged from 98% to 106%. Additionally, three standard samples (NBS 987, IAPSO and NIST 1486) were analyzed to evaluate the precision and accuracy of the results. The measured $^{87}Sr/^{86}Sr$ ratio for all the samples were consistent with the reported values, within an error. These results indicate that our established Sr separation and Sr isotope measurement methods are reliable and can hence be useful in the fields of environmental and forensic sciences.

Errors in Isotope Dilution Caused by Matrix-induced Mass Bias Effect in Quadrupole Inductively Coupled Plasma-Mass Spectrometry

  • Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3482-3488
    • /
    • 2014
  • Matrix-induced mass bias and its effect on the accuracy of isotope ratio measurements have been examined for a quadrupole-based inductively coupled plasma-mass spectrometer (Q ICP-MS). Matrix-induced mass bias effect was directly proportional to % mass difference, and its magnitude varied for element and nebulizer flow rate. For a given element and conditions in a day, the effect was consistent. The isotope ratio of Cd106/Cd114 under $200{\mu}g\;g^{-1}$ U matrix deviated from the natural value significantly by 3.5%. When Cd 111 and Cd114 were used for the quantification of Cd with isotope dilution (ID) method, the average of differences between the calculated and measured concentrations was -0.034% for samples without matrix ($0.076{\mu}g\;g^{-1}$ to $0.21{\mu}g\;g^{-1}$ for the period of 6 months). However, the error was as large as 1.5% for samples with $200{\mu}g\;g^{-1}$ U. The error in ID caused by matrix could be larger when larger mass difference isotopes are used.

Applications and Prospects of Stable Isotope in Aquatic Ecology and Environmental Study (수생태 환경 연구에 있어 안정동위원소의 활용과 전망)

  • Choi, Bohyung;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.96-104
    • /
    • 2018
  • Stable isotope approach for aquatic ecology and environmental sciences has been introduced as very useful technique since 1980s and also has been applied to investigate various issues in aquatic ecology and environmental study last 10 years in Korea. Especially carbon and nitrogen isotope ratios have been mainly used to understand food web energy flow and ecosystem structure. In addition, nitrogen isotope ratio has been applied for nitrogen cycle and source identification as well as biomagnification studies. However, large temporal or spatial variations of nitrogen isotope ratio of primary producer have been found in many aquatic environments, and it is regarded as the critical problems to determine trophic level of aquatic animals. Recently, the compound specific isotope analysis of nitrogen within individual amino acids has been developed as an alternative method for trophic ecology. This article introduces the progress history of stable isotope application in aquatic ecology and environmental sciences, and also suggests new direction based on future prospects in stable isotope ecology and environmental study.

Application of Stable Isotope Ratio Analysis for Origin Authentication of Pork

  • Kim, Kyong Su;Kim, Jae Sung;Hwang, In Min;Jeong, In Seon;Khan, Naeem;Lee, Sun Im;Jeon, Dong Bok;Song, Yang Hoon;Kim, Kwan Suk
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Origin authenticity of the animals used as food has always been a major concern to consumers around the world. In the past twenty years, a stable isotope ratio has been used for origin authentication. In this study, pork samples, both local and imported, were collected from the major markets from all around South Korea and analyzed for stable isotope ratios of nitrogen (${\delta}^{15}N$‰) and carbon (${\delta}^{13}C$‰), using Isotope Ratio Mass Spectrometry (IR-MS). A total of 599 samples with 335 Korean and 264 imported from 13 countries within America and Europe were investigated in accordance to the standard established methods for isotope ratio analysis. The results showed a significant variation related to the origin of the samples, explaining the difference in the feeding styles of the pork in each country. The stable isotope ratio values of carbon (${\delta}^{13}C$‰) were found in the decreasing order of: America ($-15.55{\pm}1.01$‰)>Korea ($-19.62{\pm}0.89$‰)>Europe ($-24.79{\pm}1.35$‰). Canada was having ${\delta}^{13}C$ ratio of $-22.87{\pm}0.92$‰, which is very low in the region of America and very close to Europe (-23.78 to -27.17‰). For nitrogen ${\delta}^{15}N$‰ the order was: America ($4.92{\pm}0.71$‰)>Europe ($4.54{\pm}0.66$‰)>Korea ($3.69{\pm}0.54$‰), with a slight variation among countries in each region studied. From the results it was concluded that the stable isotope ratio of the pork samples from different countries provide enough information about the origin and is therefore a potential tool which can be employed for origin authentication.

A Study of Salmon Oil Type Analysis by FT-IR and Carbon Isotopes Ratio (FT-IR과 탄소동위원소 분석을 통한 연어유의 구분에 관한 연구)

  • Cho, Eun-Ah;Cha, Yun-Hwan;Lee, Young-Sang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.968-973
    • /
    • 2012
  • This study analyzes the structure types of salmon oil to evaluate the purity of salmon oil products based on the 38 different types of imported salmon oil products distributed in the Republic of Korea. The major types of omega-3 foods in the salmon oil are ethyl ester (EE) and triglyceride (TG). If the salmon oil contained potential contaminants and was processed in order to remove it, EE type omega-3 fatty acids are found in concentration. This provides a good guide in assessing if products were made with EE type ingredients or re-esterified contaminated materials. The results of the FT-IR analysis showed significant difference in the C=O, C-O band positions in TG and EE. There were 19 TG type products and 19 EE type products. The analysis of carbon isotope ratio was performed on the types of TG and EE. There were different properties in the 19 TG type products. In one product, the carbon isotope ratio was -25.15 and the other 18 products showed -22.15~-23.96. The carbon isotope ratio of all 19 EE type products showed -21.91~-23.74. The results of the TLC analysis showed similar results with FR-IR. The re-esterified TG form was not detected in the TG type products, confirming that the TG type products contained natural salmon oil. This study aimed to provide the basic material in classifying the types of natural salmon oil and re-esterified salmon oil, by analyzing the pattern and proportion of FT-IR spectrum, carbon isotope ratio, and TLC.

Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type

  • Chung, Ill-Min;Lee, Taek-Jun;Oh, Yong-Taek;Ghimire, Bimal Kumar;Jang, In-Bae;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.195-200
    • /
    • 2017
  • Background: The natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer. Methods: C, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry. Results: The type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng (p < 0.05). The ${\delta}^{15}N_{AIR}$ and ${\delta}^{34}S_{VCDT}$ values in ginseng roots more significantly discriminated the cultivation land and type of organic fertilizers in ginseng cultivation than the ${\delta}^{13}C_{VPDB}$ value. The combination of ${\delta}^{13}C_{VPDB}$, ${\delta}^{15}N_{AIR}$, or ${\delta}^{34}S_{VCDT}$ in ginseng, except the combination ${\delta}^{13}C_{VPDB}-^{34}S_{VCDT}$, showed a better discrimination depending on soil type or fertilizer type. Conclusion: This case study provides preliminary results about the variation of C, N, and S isotope composition in ginseng according to the cultivation soil type and organic fertilizer type. Hence, our findings are potentially applicable to evaluate ginseng authenticity depending on cultivation conditions.

Sensitivity studies on a novel nuclear forensics methodology for source reactor-type discrimination of separated weapons grade plutonium

  • Kitcher, Evans D.;Osborn, Jeremy M.;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1355-1364
    • /
    • 2019
  • A recently published nuclear forensics methodology for source discrimination of separated weapons-grade plutonium utilizes intra-element isotope ratios and a maximum likelihood formulation to identify the most likely source reactor-type, fuel burnup and time since irradiation of unknown material. Sensitivity studies performed here on the effects of random measurement error and the uncertainty in intra-element isotope ratio values show that different intra-element isotope ratios have disproportionate contributions to the determination of the reactor parameters. The methodology is robust to individual errors in measured intra-element isotope ratio values and even more so for uniform systematic errors due to competing effects on the predictions from the selected intra-element isotope ratios suite. For a unique sample-model pair, simulation uncertainties of up to 28% are acceptable without impeding successful source-reactor discrimination. However, for a generic sample with multiple plausible sources within the reactor library, uncertainties of 7% or less may be required. The results confirm the critical role of accurate reactor core physics, fuel burnup simulations and experimental measurements in the proposed methodology where increased simulation uncertainty is found to significantly affect the capability to discriminate between the reactors in the library.

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Accurate Measurement of Isotope Amount Ratios of Lead in Bronze with Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok;Kim, Jin-Il;Yim, Yong-Hyeon;Hwang, Euijin;Kim, Tae Kyu
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.87-90
    • /
    • 2013
  • Isotope amount ratios of lead in a bronze sample have been successfully determined using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Matrix separation conditions were tested and optimized using ion exchange chromatography with anion-exchange resin, AG1-X8, and sequential elution of the 0.5 M HBr and 7 M $HNO_3$ to separate lead from very high contents of copper and tin in bronze matrix. Mercury was also removed efficiently in the optimized separation condition. The instrumental isotope fractionation of lead in the MC-ICP-MS measurement was corrected by the external standard sample bracketing method using an external standard, NIST SRM 981 lead common isotope ratio standard followed by correction of procedure blank to obtain reliable isotope ratios of lead. The isotope ratios, $^{206}Pb/^{204}Pb$, $^{207}Pb/^{204}Pb$, $^{208}Pb/^{204}Pb$, and $^{208}Pb/^{206}Pb$, of lead were determined as $18.0802{\pm}0.0114$, $15.5799{\pm}0.0099$, $38.0853{\pm}0.0241$, and $2.1065{\pm}0.0004$, respectively, and the determined isotope ratios showed good agreement with the reference values of an international comparison for the same sample within the stated uncertainties

Optimal Conditions for Pretreated Sample for Sr Isotope Analysis by MC-ICP-MS: A Comparison Between Eichrom (SR-R50-S)'s and Bio-Rad(AG®50W-X8)'s Resins (다검출기 유도결합 플라즈마 질량분석기에 의한 Sr 동위원소 분석을 위해 전처리된 시료의 최적 조건: Eichrom사 Sr 수지(SR-R50-S)와 Bio-Rad사 수지(AG®50W-X8) 비교)

  • Myoung Jung, Kim;Seung-Gu, Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.507-520
    • /
    • 2022
  • The Sr isotope ratio, which is used as basic data for rock formation time, crustal and mantle evolution studies, is determined by mass spectrometer such as thermal ionization mass spectrometry (TIMS) or multi-detector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this technical report, we compared how incomplete chemical separation of elements affects the determination of Sr isotope ratios. For the experiment, commercial resin, NBS987(NIST SRM987) Sr isotope standard, and rock standard samples from the Geological Survey of Japan (GSJ) such as JG1a, JB3 and JA1 were used. As a result of the comparative experiment, it was clearly observed that the measured values of 87Sr/86Sr change when Rb remains due to incomplete separation of the NBS987 Sr isotope standard sample as well as the rock standard samples of GSJ. This indicates that complete separation is an important factor since the calculated value deviates from the true value even though correction for isotope interference by isobar is performed when measuring the isotope ratio with MC-ICP-MS. This also suggests that, when reporting the measurement result of Sr isotope ratio using MC-ICP-MS, the measurement strength of 85Rb should be reported together with the measurement strength of all isotopes of Sr so that isotope interference by isobar can be judged.