• Title/Summary/Keyword: isothermal decomposition kinetics

Search Result 14, Processing Time 0.019 seconds

Cure Kinetics and Thermal Properties of Epoxy Resin Initiated by Methylanilinium Salts as a Latent Cationic Curing Agent (잠재성 양이온 경화제로서 methylanilinium 염에 의해 개시된 에폭시 수지의 경화 동력학 및 열적 특성)

  • 김택진;박수진;이재락
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.34-37
    • /
    • 2000
  • The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluroantimonate (CMH) curing agent on cure behavior and thermal properties of DGEBA epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic in a given temperature and reveals complex cure behavior as indicated by multiple exotherms. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator due to high activity of CMH. Viscoelastic properties during gel formation of DGEBA with CMH were investigated by rheological techniques under isothermal condition. The gel time obtained from the modulus crossover. point t(G')=G", was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization. The thermal stabilities were discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

  • PDF

A Study on Effects of Vulcanization Systems on Cross-linking and Degradation Reactions of NR/CR Blends Using Dynamic DSC and TGA (Dynamic DSC와 TGA를 이용한 NR/CR 고무블렌드의 가황시스템이 가교 및 열화반응에 미치는 영향 연구)

  • Min, Byung-kwon;Park, DongRyul;Ahn, WonSool
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • Effects of variations sulfur/accelerator ratio on cross-linking and thermal degradation behavior of NR/CR rubber compounds were studied using both dynamic DSC and non-isothermal TGA. DSC thermograms of the given samples were obtained with several different heating rates, and after cross-liked in DSC, TGA thermograms with the same samples also obtained. Kissinger analysis was applied to assess the activation energies for the cross-linking and thermal decomposition processes. Results showed that the formation and thermal decomposition reaction of the samples occurred in the overall temperature range of $120{\sim}180^{\circ}C$ and $350{\sim}450^{\circ}C$, respectively, exhibiting that data could be well-fittable by Kissinger method. Furthermore, formation activation energy by DSC was estimated as $83.0{\pm}5.0kJ/mol$, which was much smaller than that of degradation by TGA, $147.0{\pm}2.0kJ/mol$. From these results, it was considered that, although variations of sulfur/accelerator ratio in the present experiments affected little on the formation mechanism and/or thermal degradation, they could play roles as the catalysts which lower the activation energy of formation. Because of stabilization after formation reaction, however, they have no more effects on the lowering the activation energy, showing higher values when decomposition, caused by main-chain scissions.

Effect of Water on the Kinetics of Nitric Oxides Reduction by Ammonia over V-based Catalyst (바나듐계 촉매상에서 암모니아를 이용한 질소산화물의 환원반응속도에 수분이 미치는 영향에 관한 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.73-82
    • /
    • 2012
  • The main and side reactions of the three selective catalytic reduction (SCR) reactions with ammonia over a vanadium-based catalyst have been investigated using synthetic gas mixtures in the temperature range of $170{\sim}590^{\circ}C$. The three SCR reactions are standard SCR with pure NO, fast SCR with an equimolar mixture of NO and $NO_2$, and $NO_2$ SCR with pure $NO_2$. Vanadium based catalyst has no significant activity in NO oxidation to $NO_2$, while it has high activity for $NO_2$ decomposition at high temperatures. The selective catalytic oxidation of ammonia and the formation of nitrous oxide compete with the SCR reactions at the high temperatures. Water strongly inhibits the selective catalytic oxidation of ammonia and the formation of nitrous oxide, thus increasing the selectivity of the SCR reactions. However, the presence of water inhibits the SCR activity, most pronounced at low temperatures. In this study, the experimental results are analyzed by means of a dynamic one-dimensional isothermal heterogeneous plug-flow reactor (PFR) model according to the Eley-Rideal mechanism.

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.