• Title/Summary/Keyword: isosurface

Search Result 21, Processing Time 0.025 seconds

Trilinear Isosurface Extraction Using Cell Decomposition (정육면체형 셀의 분해를 이용한 삼중선형 등위면의 계산)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.83-91
    • /
    • 2007
  • This paper describes an algorithm to compute and visualize a topologically accurate trilinear isosurface from three dimensional volumetric image via cubic cell decomposition. An isosurface is often used for visualizing a three dimensional volumetric image. An isosurface defined in each cubic cell of the volume is triangulated in order to be visualized in a computer. However, most isosurface extraction methods generate a triangulated isosurface which may not be topologically equivalent to the ideal trilinear isosurface. We propose a method to decide a correct connectivity of a trilinear isosurface in a cubic cell and perform appropriate cell decomposition according to the decision. Using the method, we can extract isosurface triangles from the cells generated by the decomposition. We prove that this method generates a triangulated isosurface which is topologically equivalent to the trilinear isosurface. We implemented our proposed algorithm and the result shows it can generate topologically accurate trilinear isosurface.

  • PDF

Isosurface Component Tracking and Visualization in Time-Varying Volumetric Data (시변 볼륨 데이터에서의 등위면 콤포넌트 추적 및 시각화)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.225-231
    • /
    • 2009
  • This paper describes a new algorithm to compute and track the deformation of an isosurface component defined in a time-varying volumetric data. Isosurface visualization is one of the most common method for effective visualization of volumetric data. However, most isosurface visualization algorithms have been developed for static volumetric data. As imaging and simulation techniques are developed, large time-varying volumetric data are increasingly generated. Hence, development of time-varying isosurface visualization that utilizes dynamic properties of time-varying data becomes necessary. First, we define temporal correspondence between isosurface components of two consecutive timesteps. Based on the definition, we perform an algorithm that tracks the deformation of an isosurface component that can be selected using the Contour Tree. By repeating this process for entire timesteps, we can effectively visualize the time-varying data by displaying the dynamic deformation of the selected isosurface component.

Surface Reconstruction from Cross-Sectional Images using the Shrink-Wrapping Algorithm (Shrink-Wrapping 알고리즘을 이용한 단층영상으로부터의 표면 재구성)

  • Park, Eun-Jin;Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching cube algorithm, our method does not extract iso-density surface(isosurface) directly from the voxels but calculates the iso-density point(isopoint) first. After building the relatively coarse initial mesh by the Cell-boundary algorithm approximating the isosurface, it produces the final isosurface by iteratively shrinking and smoothing the initial mesh. Comparing with the Marching Cube algorithm, our method is robust and does not make any crack in resulting surface model. Furthermore, the proposed method surmounts the O(1)-adjacency limitation of MC in defining the isopoints by permitting the O(2) and O(3)-adjacent isopoints in surface reconstruction, and can produce more accurate isosurface. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.

A cavitation performance prediction method for pumps PART1-Proposal and feasibility

  • Yun, Long;Rongsheng, Zhu;Dezhong, Wang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2471-2478
    • /
    • 2020
  • Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitation in pumps, so it is necessary to improve pumps cavitation performance. The modern pump optimization design method mainly adopts parameterization and artificial intelligence coupling optimization, which requires direct correlation between geometric parameters and pump performance. The existing cavitation performance calculation method is difficult to be integrated into multi-objective automatic coupling optimization. Therefore, a fast prediction method for pump cavitation performance is urgently needed. This paper proposes a novel cavitation prediction method based on impeller pressure isosurface at single-phase media. When the cavitation occurs, the area of pressure isosurface Siso increases linearly with the NPSHa decrease. This demonstrates that with the development of cavitation, the variation law of the head with the NPSHa and the variation law of the head with the area of pressure isosurface are consistent. Therefore, the area of pressure isosurface Siso can be used to predict cavitation performance. For a certain impeller blade, since the area ratio Rs is proportional to the area of pressure isosurface Siso, the cavitation performance can be predicted by the Rs. In this paper, a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments, which will greatly accelerate the pump hydraulic optimization design.

Development of Interactive 3D Volume Visualization Techniques Using Contour Trees (컨투어 트리를 이용한 삼차원 볼륨 영상의 대화형 시각화 기법 개발)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.67-76
    • /
    • 2011
  • This paper describes the development of interactive visualization techniques and a program that allow us to visualize the structure of the volume data and interactively select and visualize the isosurface components using contour tree. The main characteristic of this technique is to provide an algorithm that draws the contour tree in 2D plane in a way that users easily understand the tree, and to provide an algorithm that can efficiently extract an isosurface component utilizing GPU's parallel architecture. The main characteristic of the program we developed through implementing the algorithms is to provide us with an interactive user interface based on the contour tree for extracting an isosurface component and visualization that integrates with previous isosurface and volume rendering techniques. To show the excelland vof our methods, we applied 3D biomedical volume data to our algorithms. The results show that we could interactively select the isosurface components that represent a polypeptide chain, a ventricle and a femur respectively using the user interface based on our contour tree layout method, and extract the isosurface components with 3x-4x higher speed compared to previous methods.

Efficient Computation of Isosurface Curvatures on GPUs Based on the de Boor Algorithm (드 부어 알고리즘을 이용한 GPU에서의 효율적인 등가면 곡률 계산)

  • Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.47-54
    • /
    • 2017
  • In this paper, we propose an improved curvature-based GPU (Graphics Processing Unit) isosurface ray-casting technique. Our method adopts the fast evaluation method proposed by Sigg et al. [1] to find the isosurface, but replaces the computation of the gradient and Hessian with the de Boor algorithm. In this way, we can reduce the number of additional texture fetches from 84 to 27 thus improving the performance by up to ${\approx}30%$, depending on the platforms.

Mesh-based Marching Cubes on the GPU (메시 기반 GPU 마칭큐브)

  • Kim, Hyunjun;Kim, Dohoon;Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • We propose a modified real-time marching cubes technique that extracts isosurfaces in the form of connected meshes instead of triangle soup. In this way, a various mesh-based isosurface rendering techniques can be implemented and additional information of the isosurfaces such as its topology can be extracted in real-time. In addition, we propose a real-time technique to extract adjacency-triangle structure for geometry shaders that can be used for various shading effects such as silhouette rendering. Compared with the previous technique that welds the output triangles of classical marching cubes, our technique shows up to 300% performance improvement.

Interactive Virtual Anthroscopy Using Isosurface Raycasting Based on Min-Max Map (최대-최소맵 기반 등위면 광선투사법을 이용한 대화식 가상 관절경)

  • 임석현;신병석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2004
  • A virtual arthroscopy is a simulation of optical arthroscopy that reconstructs anatomical structures from tomographic images in joint region such as a knee, a shoulder and a wrist. In this paper, we propose a virtual arthroscopy based on isosurface raycasting, which is a kind of volume rendering methods for generating 3D images within a short time. Our method exploits a spatial data structure called min-max map to produce high-quality images in near real-time. Also we devise a physically-based camera control model using potential field. So a virtual camera can fly through in articular cavity without restriction. Using the high-speed rendering method and realistic camera control model, we developed a virtual arthroscopy system.

Topology Preserving Tetrahedral Decomposition Applied To Trilinear Interval Volume Tetrahedrization

  • Sohn, Bong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.667-681
    • /
    • 2009
  • We describe a method to decompose a cube with trilinear interpolation into a collection of tetrahedra with linear interpolation, where the isosurface topology is preserved for all isovalues during decomposition. Visualization algorithms that require input scalar data to be defined on a tetrahedral grid can utilize our method to process 3D rectilinear data with topological correctness. As one of many possible examples, we apply the decomposition method to topologically accurate tetrahedral mesh extraction of an interval volume from trilinear volumetric imaging data. The topological correctness of the resulting mesh can be critical for accurate simulation and visualization.

Particle-Based Extended Marching Cubes with Efficient Quadratic Error Function (효율적인 2차 오차 함수를 이용한 입자 기반 Extended Marching Cubes)

  • Yu-Bin Kwon;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.387-390
    • /
    • 2024
  • 본 논문에서는 효율적인 2차 오차 함수를 이용하여 입자 기반에서 EMC(Extended Marching Cubes) 알고리즘을 구현할 수 있는 새로운 알고리즘을 제안한다. Smoothing 커널(Kernels)을 통해 계산한 입자 평균 위치에서 레벨셋(Level-set)을 계산해 스칼라장을 구축한다. 그리고 난 뒤 SPH(Smoothed particle hydrodynamics)기반의 커널을 통해 밀도, 입자 평균 위치를 계산한다. 스칼라장을 이용해 등가 곡면(Isosurface)을 찾고 음함수로 표현된 표면을 구성한다. SPH 커널을 공간에서 미분하면 공간상의 어느 위치에서나 기울기를 계산할 수 있고, 이를 통해 얻어진 법선벡터를 이용하여 일반적인 EMC나 DC(Dual contouring)에서 사용하는 2차 오차 함수를 효율적으로 설계한다. 결과적으로 제안하는 방법은 메쉬와 같이 연결정보다 없는 입자 기반 데이터에서도 EMC 알고리즘을 구현하여 볼륨(Volume) 손실을 줄이고, 복잡한 음함수 표면을 표현할 수 있게 한다.

  • PDF