DOI QR코드

DOI QR Code

Topology Preserving Tetrahedral Decomposition Applied To Trilinear Interval Volume Tetrahedrization

  • Sohn, Bong-Soo (School of Computer Science and Engineering, Chung-Ang University)
  • Published : 2009.12.30

Abstract

We describe a method to decompose a cube with trilinear interpolation into a collection of tetrahedra with linear interpolation, where the isosurface topology is preserved for all isovalues during decomposition. Visualization algorithms that require input scalar data to be defined on a tetrahedral grid can utilize our method to process 3D rectilinear data with topological correctness. As one of many possible examples, we apply the decomposition method to topologically accurate tetrahedral mesh extraction of an interval volume from trilinear volumetric imaging data. The topological correctness of the resulting mesh can be critical for accurate simulation and visualization.

Keywords

References

  1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. “The contour spectrum”. in IEEE Visualization Conference, pages 167-173, 1997.
  2. H. Carr, J. Snoeyink, and U. Axen. “Computing contour trees in all dimensions”. Computational Geometry: Theory and Applications, 24(2):75-94, 2003. https://doi.org/10.1016/S0925-7721(02)00093-7
  3. H. Carr, J. Snoeyink, and M. van de Panne, “Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree”, Computational Geometry: Theory and Applications, 43(1), pages 42-58, 2010 https://doi.org/10.1016/j.comgeo.2006.05.009
  4. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. “Morse complexes for piecewise linear 3-manifolds”. in Proceeding of the 19-th ACM Symposium on Computational Geometry (SoCG). Pages 361-370, 2003
  5. G. M. Nielson and J. Sung. “Interval volume tetrahedrization”. in IEEE Visualization Conference, pages 221-228, 1997.
  6. M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore. “Contour trees and small seed sets for isosurface traversal”. in ACM Symposium on Computational Geometry, pages 212-220, 1997.
  7. H. Carr, T. Moeller, and J. Snoeyink. “Artifacts caused by simplicial subdivision”. IEEE Transactions on Visualization and Computer Graphics, 12(2), pages 231-242, 2006. https://doi.org/10.1109/TVCG.2006.22
  8. C. A. Dietrich, C.E. Scheidegger, J. Schreiner, J. Comba, L. P. Nedel, and C. T. Silva, “Edge Transformations for Improving Mesh Quality of Marching Cubes”, IEEE Transactions on Visualization and Computer Graphics, 15(1): 150-159, 2009 https://doi.org/10.1109/TVCG.2008.60
  9. J. Zhang, C. Bajaj, and B.-S. Sohn. “3D finite element meshing from imaging data”. in the special issue of Computer Methods in Applied Mechanics and Engineering (CMAME) on Unstructured Mesh generation, 194(48-49), 2005.
  10. G. Albertelli and R. A. Crawfis. “Efficient subdivision of finite-element datasets into consistent tetrahedral”. in IEEE Visualizaton Conference, pages 213-219, 1997.
  11. W. J. Schroeder, B. Geveci, and M.Malaterre. “Compatible triangulations of spatialdecompositions”. in IEEE Visualization Conference, pages 211-218, 2004.
  12. P. Ning and J. Bloomenthal. “An evaluation of implicit surface tillers”. IEEE Computer Graphics and Applications, pages 33-41, 1993.
  13. P. Shirley and A. Tuchman. “A polygonal approximation to direct scalar volume rendering”. Computer Graphics, 24(5):63-70, 1990.
  14. D. N. Kenwright and D. A. Lane. “Interactive timedependent particle tracing using tetrahedral decomposition”. IEEE Ttransactions on Visualization and Computer Graphics, 2(2):120-129, 1996. https://doi.org/10.1109/2945.506224
  15. G. M. Nielson and B. Hamman. “The asymptotic decider: resolving the ambiguity in marching cubes”. in Proceedings of IEEE Visualization Conference, pages 83-91, 1991.
  16. B. K. Natarajan. “On generating topologically consistent isosurfaces from uniform samples”. The Visual Computer, 11(1):52-62, 1994. https://doi.org/10.1007/BF01900699
  17. P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno. “Reconstruction of topologically correct and adaptive trilinear isosurfaces”. Computers and Graphics, 24(3):399-418, 2000. https://doi.org/10.1016/S0097-8493(00)00036-4
  18. E. V. Chernyaev. “Marching cubes 33 : Construction of topologically correct isosurfaces”. Technical report, Technical Report CN/95-17, CERN, 1995.
  19. G. M. Nielson. “On marching cubes”. IEEE Transactions on Visualization and Computer Graphics, 9(3):283-297, 2003. https://doi.org/10.1109/TVCG.2003.1207437
  20. A. Lopes and K. Brodlie. “Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing”. IEEE Transactions on Visualization and Computer Graphics, pages 19-26, 2003.
  21. I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima. “Volumetric data exploration using interval volume”. IEEE Transactions on Visualization and Computer Graphics, 2(2):144-155, 1996. https://doi.org/10.1109/2945.506226

Cited by

  1. Volume Haptics with Topology-Consistent Isosurfaces vol.8, pp.4, 2009, https://doi.org/10.1109/toh.2015.2466239