• Title/Summary/Keyword: isolator tests

Search Result 43, Processing Time 0.027 seconds

Characterization and shaking table tests of multiple trench friction pendulum system with numerous intermediate sliding plates

  • Tsai, C.S.;Lin, Yung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.167-190
    • /
    • 2011
  • In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing numerous intermediate sliding plates. By means of mathematical formulations which have been validated by experimental results of bidirectional ground shaking, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from the component and shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

FEA Simulations and Tests of Rubber Insulator for Truck Suspension

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.303-308
    • /
    • 2017
  • In this study, finite element modeling and material property tests are performed for the finite element analysis of rubber isolator parts which support the engine and isolate the vibration. As a result of the P direction analysis of the rubber isolator parts, the static stiffness in the P direction was 44.2 kg/mm, which is well within the error of 5% as compared with the test result of 46.1 kg/mm. The static stiffness of the rubber isolator parts in the Q direction was calculated to be 7.9 kg/mm, which is comparable to the test result of 8.6 kg/mm, with an error of less than 8%. As a result of the analysis on the Z direction, the static stiffness was calculated as 57.7 kg/mm, and the test results were not available. Through this study, it is expected that the time and cost for prototype development can be reduced through nonlinear finite element analysis for rubber isolator parts.

Pyroshock and Vibration Isolation using SMA Mesh Washer Isolator (형상기억합금 메쉬 와셔 절연계의 파이로 충격 및 진동 절연 시험)

  • Youn, Se-Hyun;Jang, Young-Soon;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.307-313
    • /
    • 2009
  • In general, pyroshock is generated from the actuation of separation devices for several stage, fairing, and satellite separation in the flight of a launch vehicle. During these events, transient vibration phenomenon called pyroshock, which shows large acceleration in the high frequency range, occurs and it can result in the malfunction of electronic components which is equipped inside the launch vehicle or satellite. In this paper, mesh washer isolators made out of SMA were introduced for the isolation of pyroshock. One type of isolator primarily used pseudoelastic characteristics of SMA and the other type of isolator used shape memory effect of SMA. For the study of basic load-displacement relationship of each SMA isolator, compressive loading tests were performed and the results showed the capability of the isolator itself. Pyroshock isolation tests were followed and verified the outstanding isolation performance of isolator. In addition, random vibration tests were also performed and checked the dynamic characteristics of each SMA isolator.

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Variations in the hysteretic behavior of LRBs as a function of applied loading

  • Ozdemir, Gokhan;Bayhan, Beyhan;Gulkan, Polat
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • The study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.

Derivation of Numerical Equivalent Model of Vibration Isolator using Pseudoelastic SMA Mesh Washer (의탄성 형상기억합금 메쉬 와셔가 적용된 수동형 진동절연기의 수학적 등가모델 도출)

  • Kwon, Sung-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2014
  • A passive launch and on-orbit vibration isolator using SMA(Shape Memory Alloy) washer for both the structural safety of the micro-vibration source by attenuating the transmitted force under launch loads and the micro-vibration isolation during their on-orbit operation has been proposed, which does not require the additional launch locking mechanism. To measure the characteristics of SMA mesh washer, we performed compressive loading tests with a single SMA mesh washer and a vibration isolator using SMA mesh washer. The numerical equivalent model of vibration isolator using SMA mesh washer composed of two spring and viscous damping elements has been verified that both stiffness and viscous damping varied with respect to compressed deformations. In addition, the effectiveness of launch loads and micro-vibration reduction has been investigated through the dynamic characteristics measurement test of cooler assembly combined with passive vibration isolator.

Analysis of Performance Tests and Friction Characteristics of a Friction Type Isolator Considering Train Load Conditions (열차 하중조건을 고려한 마찰형 방진장치 성능시험 및 마찰특성 분석)

  • Koh, Yong-Sung;Lee, Chan-Young;Ji, Yong-Soo;Kim, Jae-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.694-702
    • /
    • 2017
  • In the case of an elevated railway station, structure borne noise and vibration due to structural limitations allow the load and vibration from railway vehicles to be directly transmitted to the station structure, resulting in an increase in the number of civil complaints from customers and staff of the station. The floating slab track system, which is well known as one of the solutions for reducing the noise and vibration from elevated railway stations, usually contains rubber mounts or rubber pads under the railway slab which act as a damper. These types of device have the disadvantage that is difficult to predetermine the exact stiffness and damping ratio under the nonlinear loads resulting from train services. In this study, an isolator with a friction type of wedge is introduced, which can be applied to floating slab track systems and to be designed with precisely the required stiffness. Furthermore, a comparative analysis of the stiffness between the designed and experimental values is carried out, while the damping ratio, which is closely related to the friction wedge blocks, is deduced according to the train load condition. The performance tests of the isolator were conducted in accordance with the DIN 45673-7 standard which includes both static and dynamic load tests. The load conditions for the performance tests are designed to conform to the DIN standard related to the weight of the train and rail track, in order to perform vertical and horizontal load tests, so as to ensure the secure structural safety of the railway. Also, by checking the change aspect of the friction coefficients of the friction elements according to the loading rate, the vibration reduction performance of the friction type isolator with variable loading rate conditions is examined.

Experimental investigation on the effectiveness of under-foundation isolator against train-induced vibrations considering foundation type

  • Ehsan Haghighi;Javad Sadeghi;Morteza Esmaeili
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.121-133
    • /
    • 2024
  • In this paper, the performance of under-foundation isolators against generally annoying train-induced vibrations was examined experimentally. The effect of foundation type on the efficacy of such isolators was investigated for the first time. To this end, laboratory models including a soil container, soil, building with three types of foundation (i.e., single, strip, and mat), and isolator layer were employed. Through various dynamic tests, the effects of foundation type, isolation frequency, and the dominant frequency of train load on the isolator's performance were studied. The results demonstrated that the vibration level in the unisolated building with the strip and mat foundation was, respectively, 29 and 38% lower than in the building with the single foundation. However, the efficacy of the isolator in the building with the single foundation was, respectively, 21 and 40% higher than in the building with the strip and mat foundation. Furthermore, a lower isolation frequency and a higher excitation frequency resulted in greater isolator efficacy. The best vibration suppression occurred when the excitation frequency was close to the floor's natural frequency.

Development of Guidelines for seismic isolation Design of LMR (액체금속로 면진설계를 위한 지침서 개발)

  • Yoo, Bong;Koo, Gyeong-Hoi;Lee, Jae-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.147-154
    • /
    • 1998
  • The purpose of this paper is to propose the draft guidelines of seismic isolation design of Liquid Metal Reactor (LMR) using high damping laminated rubber bearings. The scopes of guidelines include design requirements of a seismically isolated system and components, seismic isolator, isolation system, interface system between seismic isolation and non-seismic isolation part, qualification and acceptance tests of seismic isolator, seismic isolation reliability, and seismic safety and monitoring system. Proposed guidelines shall be revised to extend to general design guideline for nuclear facilities by further research and discussions.

  • PDF

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.