• Title/Summary/Keyword: isolation system

Search Result 1,778, Processing Time 0.029 seconds

Miniaturized Radio Frequency Choke Using Modified Stubs for High Isolation in MIMO Systems

  • Lim, Seonho;Choi, Woo Cheol;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.219-223
    • /
    • 2015
  • In this paper, a miniaturized radio frequency choke (RFC) using modified stubs is proposed to improve isolation characteristics in a multiple-input-multiple-output (MIMO) antenna system. The proposed RFC, based on the LC resonance, is designed to suppress the leakage current that leads to the degradation of antenna diversity performances in the MIMO antenna configuration. The proposed RFC is composed of two open stubs that are implemented on the top of the ground plane and miniaturized by adding a slit structure on the ground plane. The MIMO antennas are also designed to verify isolation performance in the LTE 2300 band (2,300-2,400 MHz). The MIMO antennas perform well with low reflection coefficient characteristics and high isolation characteristics in the whole LTE 2300 band. To evaluate the isolation in the MIMO system, the envelope correlation coefficient (ECC) is calculated, and the value is less than 0.08. The achieved ECC is regarded as a reasonable result for improving isolation performance in the frequency range of 2,300-2,400 MHz; also, radiation patterns of antenna elements are maintained regardless of the presence of RFC.

The Efficiency of a Spring Mass Dampers System for the Control of Vibrations and Structure-borne Noise (진동 및 고체음 제어를 위한 스프링 매스댐퍼계의 효과)

  • ;;;;Heiland, D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.147-147
    • /
    • 1993
  • All types of dynamic excitation, periodical, pulse or transient in vertical, horizontal or all three directions can be effectively reduced by vibration isolation systems. Typical elements for vibration isolation control are spring units consisting of a group of helical compression springs. In all cases of shock, transient or random excitation energy absorbing dampers have to be added to the spring units in order to reduce system response in the frequency range near the natural frequency of the isolation system. The same isolation system of spring units and viscos-dampers has been used since 1979 for passive protection of buildings and structures has been proved to by very advantageous for vibration and structure borne noise control. Not only because of high vertical flexibility of the spring units, compared for example with typical rubber or neoprene mounts out also because of the horizontal of flexibility, which can be adapted by modifying the spring dimensions to nearly every requirement. It is just normal to use the same basic elements for passive isolation as for active isolation.

  • PDF

A Study on Noise Transfer Path Analysi for Sound Improvement of Vehicle Using the Vibrational Power Flow (진동 동력 흐름 예측 기법을 이용한 소음 전달 경로 해석 및 차량의 실내소음저감에 관한 연구)

  • 이상권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.168-175
    • /
    • 2001
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do net quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

Seismic design for application of LNG storage tank isolation system (LNG 저장탱크의 면진시스템 적용을 위한 내진설계)

  • Seo, Ki-Young;Park, Jae-Hyun;Yang, Seong-Yeong;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.132-138
    • /
    • 2013
  • Natural gas as a clean fuel of the world demand for the trend is gradually increasing demand for clean energy in the country and there is growing interest. Therefore, LNG storage tanks and related facilities in the country of the importance of leading a community-based facility has emerged. So common sense that an earthquake with a seismic isolation device LNG storage tank similar to the actual behavior of the analytical model which can describe the development and construction of storage tanks to enhance the safety and economic design techniques need to be developed. In this study, a base isolation system, seismic analysis procedure of LNG storage tanks, and Triple-FPB developed a mathematical model of the present crystallized and complexity factors to the sum over histories model simplifies the complex behavior of the LNG storage tank with base isolation system how to interpret the seismic isolation is proposed.

  • PDF

A Study on Improvement of Sound Quality of Vehicle Using the Vibrational Power Flow (진동 유동해석기법을 이용한 자동차 실내소음 저감 및 음질 개선)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.208-214
    • /
    • 2000
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

Effects of shear keys on seismic performance of an isolation system

  • Wei, Biao;Li, Chaobin;Jia, Xiaolong;He, Xuhui;Yang, Menggang
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.345-360
    • /
    • 2019
  • The shear keys are set in a seismic isolation system to resist the long-term service loadings, and are cut off to isolate the earthquakes. This paper investigated the influence of shear keys on the seismic performance of a vertical spring-viscous damper-concave Coulomb friction isolation system by an incremental dynamic analysis (IDA) and a performance-based assessment. Results show that the cutting off process of shear keys should be simulated in a numerical analysis to accurately predict the seismic responses of isolation system. Ignoring the cutting off process of shear keys usually leads to untrue seismic responses in a numerical analysis, and many of them are unsafe for the design of isolated structure. And those errors will be increased by increasing the cutting off force of shear keys and decreasing the spring constant of shear keys, especially under a feeble earthquake. The viscous damping action postpones the cutting off time of shear keys during earthquakes, and reduces the seismic isolation efficiency. However, this point can be improved by increasing the spring constant of shear keys.

Design and Modeling of a 3-DOF Precision Stage for Vibration Isolation (제진을 위한 3 자유도 정밀 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Kim, Hwa-Soo;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.124-133
    • /
    • 2007
  • Active vibration isolation systems need the following performance specifications which are different from those of existing positioning systems: usage of seismic sensors, strict suppression of phase lead/lag in signal processing for sensors and actuators, excellent control in low frequency range and so on. In consideration of such specifications, a 3-DOF precision stage for vibration isolation is designed and modeled based on the physical characteristics. Then the major parameters such as spring constants and damping coefficients are valued by the system identification method using empirical transfer function. Finite element analysis is used as a verification and simulation tool throughout this research. This paper lays the foundation for the future research on the control of the active vibration isolation system.

Development of Active Vibration Isolation Equipments Using Fuzzy Method

  • Rim, Kyung-Hwa;Yang, Xun;An, Chae-Hun;Jin, Kyoung-Bog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.17-22
    • /
    • 2007
  • Vibration isolation equipments are mostly required in precise measurement and manufacturing system. Among all the vibration isolation equipments, air-spring is the most widely used equipment because of low resonant frequency and high damping ratio. In this study, we used Takagi-Sugeno fuzzy method to design an active vibration isolation system using air-spring, and compared the fuzzy method with passive control method and PID control method. Due to the non-linearity characteristics of air-spring, fuzzy controller was verified to be the most effective both in simulation and experiment.

  • PDF

Response spectrum analysis for regular base isolated buildings subjected to near fault ground motions

  • Moussa, Leblouba
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.527-543
    • /
    • 2012
  • This paper presents a response spectrum analysis procedure suitable for base isolated regular buildings subjected to near fault ground motions. This procedure is based on the fact that the isolation system may be treated separately since the superstructure behaves as a rigid body on well selected isolation systems. The base isolated building is decomposed into several single-degree of freedom systems, the first one having the total weight of the building is isolated while the remainder when superposed they replicate approximately the behavior of the superstructure. The response of the isolation system is governed by a response spectrum generated for a single isolated mass. The concept of the procedure and its application for the analysis of base isolated structures is illustrated with an example. The present analysis procedure is shown to be accurate enough for the preliminary design and overcomes the limits of applicability of the conventional linear response spectrum analysis.