• 제목/요약/키워드: isolation source

Search Result 557, Processing Time 0.025 seconds

Effect of Noise in Human Body (소음이 인체에 미치는 영향)

  • 이영노
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.7-8
    • /
    • 1972
  • The effects of noise exposure are of two types: Nonauditory effects and auditory effects. Nonauditory effects of noise exposure are interference with communication by speech, sleeping and emotional behavior. The noise will cause the high blood pressure and rapid pulse, also that decrease the salivation and gastric juice. in experimentaly showed that the Corticoid hormon: Gonatotropic hormone were decrease and Thyrotropic hormoone is increase. Auditory effect of noise exposure. when the normal ear is exposed to noise at noise at hamful intensities (above 90㏈) for sufficiently long periods of time, a temoral depression of hearing results, disappearing after minutes or hours of rest. When the exposure longer or intesity greater is reached the Permanent threshold shift called noise-induced hearing loss. Hearing loss resulting from noise exposure presents legal as well as medical problems. The otologist who examines and evaluates the industrial hearing loss cases must be properly informed, not only concerning the otologic but also about the physical and legal aspects of the problems. The measurement of hearing ability is the most important part of a hearing conservation, both preplacement and periodic follow-up tests of hearing. The ideal hearing conservation program would be able to reduce or eliminate the hazardous noise at its source or by acoustic isolation of noisy working area and two ear protections (plugs and muff type) were developed for personal protection.

  • PDF

STUDIES ON THE EXTRACTION OF SEAWEED PROTEINS 1. Extraction of Water Soluble Proteins (해조단백질의 추출에 관한 연구 1. 수용성 단백질의 추출)

  • RYU Hong-Soo;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.151-162
    • /
    • 1977
  • Distribution of marine algae is diverse in Korea and the resource of edible algae is abundant marking 239,037 tons of yearly production in 1976. They have been known as a protein source and used as a supplement in Korean diet. It is necessary to estimate the potentiality and properties of usable algal proteins especially as food resources and studies of extraction and separation of the proteins, therefore, are basically required for this purpose. In this study, the influence of various factors including the sample treatment, extraction time and temperature, sample us extraction solvent ratio and pH upon the extractability of the water soluble protein was determined. And the effect of precipitation treatment for isolation of the algal protein from the extracts was also tested. Nine species of algae, the major ones in consumption as food namely Porphyra suborbiculata, Undaria pinnatifida, Hizikia fusiforme, Sargassum fulvellu, Enteromorpha linza, Codium fragile, Sargassum kjellmanianum and Ulva pertusa were collected as fresh from Kijang, Yangsan Gun, in the vicinity of Busan city. The content of crude protein $(N\times6.25)$ of the algae ranged from $9.46\%\;to\;24.14\% showing the highest value in Porphyra suborbiculata and the minimum in Hizikia fusiforme. In the effort of maceration of blending methods on the extractability, immersion freezing in dry ice-methanol solution appeared most effective yielding 1.5 to 2.5 times extractability than that of the mortar grinding method. The effect of the ratio of sample vs solvent on extractability differed from species. It was enhanced at the ratio of 1:20 (w/v) in Ulva pertusa and Enteromorpha linza while the ratio was 1:30 (w/v) for Cedium fragile, Undaria pinnatifida, Hizikia fusiferme, Sargassum fulvellum and Porphyra suborbiculata and 1:40 for Sargassum kjellmanianum respectively. The effect of extraction time and temperature was revealed differently from species which might be caused by differences in the constitution of algal tissues resulting in that the extraction for 1 hour at $50^{\circ}C$ gave the maximum extractabilily in Ulva pertusa and Enteromorpha linza, 2 hours in Porphyra suborbiculata, Hikikia fusiforme, Undaria pinnatifida, Sargassum kjellmanianum and 3 hours in Codium fragile. And the extractability was higher at $50^{\circ}C$ to $60^{\circ}C$ for the most of the tested samples except Hizikia fusiforme. The optimum pH for the extraction was 9 to 12. The recovery of extractable nitrogen to the total nitrogen was $63\%$ in average with the first extracts and $8.6\%$ with the second extracts respectively. Both extracts were prepared by 2 hour extraction at $50{\pm}1^{\circ}C$ with dry ice-methanol frozen and seasand macerated materials. And these conditions assumed to be an optimum for the extraction of water soluble algal proteins since the nitrogen content after the first extraction covered $90\%$ of the total water extractable nitrogen. In the precipitation of the extracted proteins, Barnstein method and methanol treatment seemed to be more efficient than other precipitation methods.

  • PDF

Isolation and Characterization of Tartaric Acid-Degrading Bacteria from Korean Grape Wine Pomace (국산 포도주 주박으로부터 주석산 분해 세균의 분리 및 특성)

  • Kim, Jong-Hyun;Choi, Sang-Hoon;Hong, Young-A;Kim, Dong-Hwan;Lee, Won-Hee;Rhee, Chang-Ho;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.483-490
    • /
    • 2008
  • Several tartaric acid-degrading bacteria were isolated from Korean grape wine pomace after enrichment culture at $30^{\circ}C$ for 10 days in liquid media containing tartaric acid Among them, strains KMBL 5777 and KMBL 5778 exhibited the highest level in the growth and tartaric acid degradability in a medium containing 0.2%(w/v) tartaric acid as a sole carbon source. They were identified as Acetobacter tropicalis based on their morphological and physiological characteristics as well as their 16S rDNA sequences. Blast search of the 16S rDNA sequences revealed that the isolated strains are closest to Acetobacter tropicalis. Homologies of the sequences of KMBL 5777 and KMBL 5778 were 96.0 and 98.9%, respectively with those of A. tropicalis LMG 1663. Both the two bacteria showed higher tartaric acid degradation at $25^{\circ}C$ that those at 20 and $30^{\circ}C$. They could degrade tartaric acid at a wide range of pH between 4.0 and 7.0 with the most rapid degradability at pH 7.0. However, when the bacteria were grown for 8 days, the same level of tartaric acid degradation was observed at pH 4.0, 5.0, 6.0 and 7.0, which was 90.0% of degradation of the acid.

Immunogenicity of Synthetic Peptide Specific for Major Immunogenic Determinat of Hepatitis B Surface Antigen (B형간염(型肝炎) 표면항원(表面抗原)의 주면역원(主免疫原) 결정기(決定基)에 특이(特異)한 합성(合成) Peptide의 면역원성(免疫原性)에 관한 연구(硏究))

  • Shin, Kwang-soon;Han, Su-nam
    • Korean Journal of Veterinary Research
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 1985
  • Many investigators have been pursuing various attempts so far to produce hepatitis B surface antigen(HBsAg) vaccines using the techniques such as isolation from plasma of chronic HBsAg carrier, recombinant DNA technique or preparation of synthetic peptides specific for immunogenic determinants. Hepatitis B virus can not grow on any cell lines by the tissue culture technique at the present time. The plasma of chronic HBsAg carrier is expensive and its source is limited. The HBsAg from the recombinant DNA technique gave still very low yield. Another approach, therefore, has been initiated to develop a synthetic hepatitis B virus vaccine. The possible use of several distinct synthetic vaccines in prophylaxis can be facilitated by availability of full synthetic immunogens. Peptides synthesized for potential application as antiviral vaccines have been mostly tested in the form of conjugates with carrier proteins, although the free synthetic peptide can be immunogenic. To understand basic knowledges on the antigenicity and immunogenicity of a synthetic peptide specific for major immunogenic determinant of HBsAg, a nonapeptide, $H_2N^{139}Cys-Thr-Lys-Pro-Thr-Asp-Gly-^{146}Asn-Aba$ COOH, which corresponds to HBsAg amino acid residues 139 to 147, was synthesized by the Merrifield's solid-phase method with a slight modification. The antigenicity and immunogenicity of this specific synthetic peptide were examined comparing with purified plasma-derived natural HBsAg. The results obtained are as follows; 1. The peptide synthesized showed the identical amino acid composition to the theoretical value. The degree of purification and molecular weight were acertained by methods of high performance liquid chromatography and mass spectrometry. 2. Using m-maleimidobenzoyl-N-hydroxysuccinimide ester as a conjugating agent, the synthetic peptide was conjugated to rabbit albumin and ${\gamma}$-globulin, tetanus and diphtheria toxoids, and keyhole limpet hemocyanin. Their conjugation yields were 8.3, 9.5, 15.8, 13.5, and 11.2%, respectively. 3. The natural HBsAg was purified from plasma of chronic HBsAg carrier. By the electron microscopic observation of the purified natural HBsAg preparation, no Dane particles were observed and the preparation showed negative DNA polymerase activity. 4. Antigenicity of the synthetic peptide and the plasma-derived natural HBsAg was determined by competition radioimmunoassay using $^{125}I$-natural HBsAg. Their 50% inhibitions appeared as $90{\mu}g/ml$ and $0.12{\mu}g/ml$ for the synthetic peptide and the natural HBsAg, respectively. This indicates that the former was about 750-fold less antigenic than the latter. 5. Immunogenicity of the synthetic peptide was determined by administering the peptide-carrier conjugates into rabbits with and without Freund's complete adjuvant. Regardless the carrier proteins and adjuvant, positive immune responses to the synthetic peptide were observed. The higher antibody titers, however, were shown in the groups administered with Freund's complete adjuvant. 6. Immunizing dose 50% in mice of the various peptide-carrier conjugates was 5.47, 6.00, 65.16, 31.25 and $13.03{\mu}g/dose$ for rabbit albumin and ${\gamma}$-globulin, tetanus and diphtheria toxoids, and keyhole limpet hemocyanin, respectively, while the natural HBsAg showed $0.65{\mu}g/dose$. 7. It was postulated that homologous proteins prefer to heterologous ones as the carriers.

  • PDF

Isolation and Characterization of the Indigenous Microalgae Chlamydomonas reinhardtii K01 as a Potential Resource for Lipid Production and Genetic Modification (지질생산 및 유전자 조작의 잠재적 자원으로서의 토착 미세조류 Chlamydomonas reinhardtii K01의 분리 및 특성)

  • Kim, Eun-Kyung;Cho, Dae Hyun;Suh, Sang-Ik;Lee, Chang-Jun;Kim, Hee-Sik;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.202-209
    • /
    • 2022
  • The green alga Chlamydomonas reinhardtii, a unicellular haploid eukaryote, has long been used by researchers and industries as a cell factory to produce high value-added microalgae substances using genetic modification. Microalga K01, presumed to be Chlamydomonas, was isolated from 12 freshwater samples from the Chungcheong and Jeolla regions to replace C. reinhardtii, an introduced species currently used in most basic and industrial research. The isolated K01 strain was identified as C. reinhardtii through morphological and phylogenetic studies of the 18S rDNA gene sequence (NCBI accession number KC166137). The growth and lipid content of the isolated C. reinhardtii K01 were compared with three wild and four mutant strains in TAP medium, and it was found that the K01 strain could produce 1.74×107 cells/ml by the third day of culture. The growth rate of C. reinhardtii K01 was 1.5 times faster than UTEX2244, which showed the highest number of cells (1.20×107 cells/ml) among the compared strains. The lipid content of the isolated C. reinhardtii K01 (20.67%) was similar to those of the wild strains, although the fatty acid oleate C18:1 was not detected in the isolated strain but was identified in the seven others. The cell density of the isolated strain increased to 0.87 g/l during a six-day culture in BG11 medium, where nitrate (NaNO3) was introduced as a nitrogen source, while the seven acquired strains showed almost no cell proliferation.

A Study on the Bioactivity Exploration of the Collected Marine Microorganisms and Microalgaes in Korea (우리나라에서 확보한 해양미생물과 미세조류에 대한 기초생리활성 연구)

  • Seung Sub Bae;Yong Min Kwon;Dawoon Chung;Woon-Jong Yu;Kichul Cho;Eun-Seo Cho;Yoon-Hee Jung;Yun Gyeong Park;Hyemi Ahn;Dae-Sung Lee;Jin-Soo Park;Jaewook Lee;Dong-Chan Oh;Ki-Bong Oh;EunJi Cho;Sang-Ik Park;You-Jin Jeon;Hyo-Geun Lee;Keun-Yong Kim;Sang-Jip Nam;Hyukjae Choi;Cheol Ho Pan;Grace Choi
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.136-149
    • /
    • 2023
  • Basic bioactivities (antioxidant, anti-inflammatory, antibacterial, anticancer, antiviral) were investigated from 370 strains of marine bacteria, fungi, and microalgae obtained from various marine environmental regions in Korea, and the activity results were obtained at the collection site, isolation source, and species level was compared. In the case of marine bacteria, strains belonging to the generally useful genera Streptomyces and Bacillus were observed to have particularly strong efficacy and useful resources were mainly isolated from marine sediments. In the case of marine fungi and microalgae, results showing strong species-specific activity were confirmed, and results showing efficacy-specific activity were also obtained. Based on these results, it is a research result that can facilitate priority access as a strategic material for industrial revitalization and the establishment of a strategy to secure resources based on usefulness when conducting research on chemicals that are selectively effective against specific diseases or when conducting resource-based research. In addition, we believe that by using these results as material for sale through the Marine BioBank (MBB), academia and industry can use them to help accelerate the revitalization of the marine bio industry.

The Effects of Storage of Human Saliva on DNA Isolation and Stability (인체타액의 보관이 DNA 분리와 안정도에 미치는 영향)

  • Kim, Yong-Woo;Kim, Young-Ku
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • The most important progress in diagnostic sciences is the increased sensitivity and specificity in diagnostic procedures due to the development of micromethodologies and increasing availability of immunological and molecular biological reagents. The technological advances led to consider the diagnostic use of saliva for an array of analytes and DNA source. The purpose of the present study was to compare DNA from saliva with those from blood and buccal swab, to evaluate diagnostic and forensic application of saliva, to investigate the changes of genomic DNA in saliva according to the storage temperature and period of saliva samples, and to evaluate the integrity of the DNA from saliva stored under various storage conditions by PCR analysis. Peripheral venous blood, unstimulated whole saliva, stimulated whole saliva, and buccal swab were obtained from healthy 10 subjects (mean age: $29.9{\pm}9.8$ years) and genomic DNA was extracted using commercial kit. For the study of effects of various storage conditions on genomic DNA from saliva, stimulated whole saliva were obtained from healthy 20 subjects (mean age: $32.3{\pm}6.6$ years). After making aliquots from fresh saliva, they were stored at room temperature, $4^{\circ}C$, $-20^{\circ}C$, and $-70^{\circ}C$. Saliva samples after lyophilization and dry-out procedure were stored at room temperature. After 1, 3, and 5 months, the same experiment was performed to investigate the changes in genomic DNA in saliva samples. In case of saliva aliquots stored at room temperature and dry-out samples, the results in 2 weeks were also included. Integrity of DNA from saliva stored under various storage conditions was also evaluated by PCR amplification analysis of $\beta$-globin gene fragments (989-bp). The results were as follows: 1. Concentration of genomic DNA extracted from saliva was lower than that from blood (p<0.05), but there were no significant differences among various types of saliva samples. Purities of genomic DNA extracted from stimulated whole saliva and lyophilized one were significantly higher than that from blood (p<0.05). Purity of genomic DNA extracted from buccal swab was lower than those from various types of saliva samples (p<0.05). 2. Concentration of genomic DNA from saliva stored at room temperature showed gradual reduction after 1 month, and decreased significantly in 3 and 5 months (p<0.05, p<0.01, respectively). Purities of DNA from saliva stored for 3 and 5 months showed significant differences with those of fresh saliva and stored saliva for 1 month (p<0.05). 3. In the case of saliva stored at $4^{\circ}C$ and $-20^{\circ}C$, there were no significant changes of concentration of genomic DNA in 3 months. Concentration of DNA decreased significantly in 5 months (p<0.05). 4. There were no significant differences of concentration of genomic DNA from saliva stored at $-70^{\circ}C$ and from lyophilized one according to storage period. Concentration of DNA showed decreasing tendency in 5 months. 5. Concentration of genomic DNA immediately extracted from saliva dried on Petri dish were 60% compared with that of fresh saliva. Concentration of DNA from saliva stored at room temperature after dry-out showed rapid reduction within 2 weeks (p<0.05). 6. Amplification of $\beta$-globin gene using PCR was successful in all lyophilized saliva stored for 5 months. At the time of 1 month, $\beta$-globin gene was successfully amplified in all saliva samples stored at $-20^{\circ}C$ and $-70^{\circ}C$, and in some saliva samples stored at $4^{\circ}C$. $\beta$-globin gene was failed to amplify in saliva stored at room temperature and dry-out saliva.