• 제목/요약/키워드: isolation effect

검색결과 1,041건 처리시간 0.04초

전자석 액츄에이터에 의한 수동방진 테이블의 제어 (Vibration control of the vibration isolation system using the electromagnetic actuator)

  • 최현;이정윤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF

층응답을 고려한 소형면진장치의 진동대실험 (A Shaking Table Test of Small Isolation System Considering the Floor Response)

  • 김민규;전영선;이경진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

수소연료전지자동차의 절연성능 평가방법에 관한 고찰 (Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle)

  • 이기연;김동욱;김향곤
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.810-818
    • /
    • 2011
  • This paper analyzed the suitability about the isolation performance criteria which was based on human impedance and effect of current in IEC 60479-1 on the safety of human being was examined. The method of evaluation by megger and DC voltmeter was analyzed. The differences of isolation performance according to design of high-voltage system were analyzed. The factors which affect the insulation performance were analyzed for HFCV, EV, HEV, etc. through analysis of the isolation performance evaluation method. Finally, design for improved isolation performance was proposed.

원전기기의 면진을 위한 진동대 실험 II : FPS (A Shaking Table Test for Equipment Isolation in the NPP (II): FPS)

  • 김민규;전영선;최인길
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.79-89
    • /
    • 2004
  • 본 연구에서는 원전기기의 내진안전성을 증가시키기 위해 면진장치를 적용한 기기의 진동대 실험을 수행하였다. 원전구조물과 유사한 진동수 특성을 가지는 실험모형을 제작하여 실험에 사용하였으며 구조물 내부의 기기를 모형화 하기 위하여 400kg의 강체를 사용하였다. 탁월주파수 특성이 상이한 3종류 지진파를 이용하여 진동대 실험을 수행하였다. 면진장치로는 마찰진자형 베어링(FPS)을 사용하였다. 입력지진의 최대가속도를 0.1g, 0.2g, 0.25g의 3단계로 변화시키면서 실험을 수행하였고 또한 1방향, 2방향 및 3방향 가진에 의한 거동을 분석하였다. 실험결과 지진파의 연직성분이 FPS의 면진성능에 영향을 미치는 것을 알 수 있었으며 펄스타입의 속도성분이 큰 근거리 지진인 경우 면진효과가 감소하는 것을 알 수 있었다.

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

Isolation of Antimicrobial Substance from the Korean Traditional Leaf Mustard, Brassica juncea Coss.

  • Kang Seong-Koo
    • Plant Resources
    • /
    • 제8권2호
    • /
    • pp.145-154
    • /
    • 2005
  • The antimicrobial effect of each fraction after fractionation of an ethanol extract of leaf mustard was examined in terms of nucleic acid, chloroform, ethylacetate, and butanol. The ethylacetate fraction, which showed the strongest level of antimicrobial effect among the different ethanol extract fractions of leaf mustard, was isolated and purified using silica gel column chromatography and HPLC, respectively, to obtain a single antimicrobial substance called KLM-1. The antimicrobial effect of this substance was 10 times higher than that of the ethylacetate fraction. A further study is on the way to confirm the structure of the antimicrobial substance KLM-1 through LC/Mass and NMR.

  • PDF

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

Suspended Columns for Seismic Isolation in Structures (SCSI): A preliminary analytical study

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.743-755
    • /
    • 2019
  • In this paper, a new system of seismic isolation for buildings - called suspended columns - is introduced. In this method, the building columns are placed on the hinged cradle seats instead of direct connection to the foundation. In this system, each of the columns is put on a seat hung from its surrounding area by a number of cables, for which cavities are created inside the foundation around the columns. Inside these cavities, the tensile cables are hung. Because of the flexibility of the cables, the suspended seats vibrate during an earthquake and as a result, there is less acceleration in the structure than the foundation. A Matlab code was written to analyze and investigate the response of the system against the earthquake excitations. The findings showed that if this system is used in a building, it results in a significant reduction in the acceleration applied to the structure. A shear key system was used to control the structure for service and lateral weak loads. Moreover, the effect of vertical acceleration on the seismic behavior of the system was also investigated. Effect of the earthquake characteristic period on the system performance was studied and the optimum length of the suspension cables for a variety of the period ranges was suggested. In addition, measures have been taken for long-term functioning of the system and some practical feasibility features were also discussed. Finally, the advantages and limitations of the system were discussed and compared with the other common methods of seismic isolation.

원자력발전소 비상디젤발전기의 가동중 진동저감 효과 (Operating Vibration Reduction Effect Evaluation of EDG at the NPP Site)

  • 김민규;전영선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.111-118
    • /
    • 2006
  • The Emergency Diesel Generator(EDG) is a very important piece of equipment for the safety of a Nuclear Power Plant(NPP). In this study, the operating vibration or three kinds or EDG system was measured. The target EDG systems art Yonggwang 5 unit, Ulchin 2 unit and Ulchin 3 unit. The Yonggwang 5 and Ulchin 3 unit EDG system is the same type but the foundation systems are different. One is an anchor bolt type and the other is a spring and viscous-damper type. The purpose of this measurement is for a verification of the vibration isolation effect according to the foundation system. As a result. it can he said that the spring and viscous damper system of the EDG performed well for the vibration isolation.

  • PDF

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.