• Title/Summary/Keyword: isolated structure

Search Result 1,669, Processing Time 0.023 seconds

Self-centering passive base isolation system incorporating shape memory alloy wires for reduction in base drift

  • Sania Dawood;Muhammad Usman;Mati Ullah Shah;Muhammad Rizwan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.531-543
    • /
    • 2023
  • Base isolation is one of the most widely implemented and well-known technique to reduce structural vibration and damages during an earthquake. However, while the base-isolated structure reduces storey drift significantly, it also increases the base drifts causing many practical problems. This study proposes the use of Shape Memory Alloys (SMA) wires for the reduction in base drift while controlling the overall structure vibrations. A multi-degree-of-freedom (MDOF) structure along with base isolators and Shape-Memory-Alloys (SMA) wires in diagonal is tested experimentally and analytically. The isolation bearing considered in this study consists of laminates of steel and silicon rubber. The performance of the proposed structure is evaluated and studied under different loadings including harmonic loading and seismic excitation. To assess the seismic performance of the proposed structure, shake table tests are conducted on base-isolated MDOF frame structure incorporating SMA wires, which is subjected to incremental harmonic and historic seismic loadings. Root mean square acceleration, displacement and drift are analyzed and discussed in detail for each story. To better understand the structure response, the percentage reduction of displacement is also determined for each story. The result shows that the reduction in the response of the proposed structure is much better than conventional base-isolated structure.

Study on Seismic Responses for Base Isolated Structure Subjected to Earthquakes with Different Frequency Characteristics (주파수특성이 다른 입력지진에 대한 면진구조물의 지진응답연구)

  • Yoo, Bong;Lee, Jae-Han
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.224-231
    • /
    • 1997
  • A study on the seismic responses for a base isolated structure subjected to earthquakes with different frequency characteristics is peformed with time history analyses. Two types of seismic inputs are considered in these analyses, one is short period earthquakes such as El Centro(1940, NS), the other is long period ones such as Mexico(1985). The seismic responses of the base isolated structure depend on seismic input types and isolation frequencies. In this study the 0.5 Hz of isolation frequency for short period earthquakes remarkably reduces the acceleration responses, increases the relative displacements of isolator that are still within the proposed limits of isolator. However higher isolation frequency for long period earthquakes is more adequate to reduce the seismic responses of the base isolated structures; in the study 0.75 Hz is effective to Mexico 1985 earthquake.

  • PDF

Evaluation of the influence of interface elements for structure - isolated footing - soil interaction analysis

  • Rajashekhar Swamy, H.M.;Krishnamoorthy, A.;Prabakhara, D.L.;Bhavikatti, S.S.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.65-83
    • /
    • 2011
  • In this study, two extreme cases of compatibility of the horizontal displacements between the foundation and soil are considered, for which the pressure and settlements of the isolated footings and member end actions in structural elements are obtained using the three dimensional models and numerical experiments. The first case considered is complete slip between foundation and soil, termed as the un-coupled analysis. In the second case of analysis, termed as the coupled analysis, complete welding is assumed of joints between the foundation and soil elements. The model and the corresponding computer program developed simulate these two extreme states of compatibility giving insight into the variation of horizontal displacements and horizontal stresses and their intricacies, for evaluation of the influence of using the interface elements in soil-structure interaction analysis of three dimensional multiscale structures supported by isolated footings.

Analyses of Vertical Seismic Responses of Seismically Isolated Nuclear Power Plant Structures Supported by Lead Rubber Bearings (납적층고무받침(LRB)으로 지지된 면진 원전 구조물의 수직방향 지진응답 분석)

  • Cho, Sung Gook;Yun, Sung Min;Kim, Dookie;Hoo, Kee Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2015
  • It is very important to assure the seismic performance of equipment as well as building structures in seismic design of nuclear power plant(NPP). Seismically isolated structures may be reviewed mainly on the horizontal seismic responses. Considering the equipment installed in the NPP, the vertical earthquake responses of the structure also should be reviewed. This study has investigated the vertical seismic demand of seismically isolated structure by lead rubber bearings(LRBs). For the numerical evaluation of seismic demand of the base isolated NPP, the Korean standard nuclear power plant (APR1400) is modeled as 4 different models, which are supported by LRBs to have 4 different horizontal target periods. Two real earthquake records and artificially generated input motions have been used as inputs for earthquake analyses. For the study, the vertical floor response spectra(FRS) were generated at the major points of the structure. As a results, the vertical seismic responses of horizontally isolated structure have largely increased due to flexibility of elastomeric isolator. The vertical stiffness of the bearings are more carefully considered in the seismic design of the base-isolated NPPs which have the various equipment inside.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

CR GEOMETRY/ANALYSIS AND DEFORMATION OF ISOLATED SINGULARITIES

  • Miyajima, Kimio
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.193-223
    • /
    • 2000
  • In the late 1970's, M. Kuranishi proposed to control the moduli of the germ of a normal Stein space by deformations of the CR structure on the boundary. I this paper, we will see that it is naturally accomplished by considering stably embeddable deformations of CR structures.

  • PDF

Seismic Response Analysis of Support-Isolated Equipment in Primary Structure (감진계통 지지부가 설치된 기기의 지진해석)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1992
  • The effectiveness of the support-isolation system for the equipment mounted on the primary structure is evaluated to reduce its responses under the earthquake load with considering the interaction between the primary structure and the internal equipment in this paper. A computer code (KBISAP) is developed to analyze the above system using the matrix condensation technique and constant average acceleration method. To evaluate the effectiveness of the support-isolation system, three systems are used in this study as follows: i) fixed-base structure with support-fixed equipment, ii) base-isolated structure with support-fixed equipment and iii) fixed-base structure with support-isolated equipment. The results of case study show that the acceleration of equipment with the support-isolation system is less than that of the support-fixed equipment in the base-isolated structure and significantly reduced the response compared with that of the support-fixed equipment in the fixed-base structure with the reduction factor of 8. The support-isolation system used in this study can reduce the response and also increase the safety margin of the important safety-related internal equipments.

  • PDF

Dynamic Stability Analysis of Base-Isolated Low-level Nonlinear Structure Under Earthquake Excitation (지진시 저층건물 면진구조의 비선형 동적 거동)

  • Mun, Byeong-Yeong;Gang, Gyeong-Ju;Gang, Beom-Su;Kim, Gye-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1743-1750
    • /
    • 2001
  • This paper presents an analysis of nonlinear response of the seismically isolated structure against earthquake excitation to evaluate isolation performances of a rubber bearing. In the analysis of the vibration of building, the building is modeled by lumped mass system where the restoring force is considered as linear, bilinear and trilinear. Fundamental equations of motion are derived for the base isolated structure, and hysteretic and nonlinear-elastic characteristics are considered for a numerical calculation. The excitation levels are magnified fur the recorded strong earthquake motions in order to examine dynamic stability of the structure. Seismic responses (of the building are compared fur the each restoring force type. As a result, it is shown that the effect of the motion by the nonlinear response of the building is comparatively not so large from a seismic design standpoint. The responses of the isolated structures reduce sufficiently and controled the motion of the building well in a practical range. By increasing the acceleration of the earthquake, the yielding of the farce was occurred in the concrete and steel frame, which shows the necessity of the exact nonlinear dynamic analysis.

Study on rockburst prevention technology of isolated working face with thick-hard roof

  • Jia, Chuanyang;Wang, Hailong;Sun, Xizhen;Yu, Xianbin;Luan, Hengjie
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.447-459
    • /
    • 2020
  • Based on the literature statistical method, the paper publication status of the isolated working face and the distribution of the rockburst coal mine were obtained. The numerical simulation method is used to study the stress distribution law of working face under different mining range. In addition, based on the similar material simulation test, the overlying strata failure modes and the deformation characteristics of coal pillars during the mining process of the isolated working face with thick-hard key strata are analyzed. The research shows that, under the influence of the key strata, the overlying strata formation above the isolated working face is a long arm T-type spatial structure. With the mining of the isolated working face, a series of damages occur in the coal pillars, causing the key strata to break and inducing the rockburst occurs. Combined with the mechanism of rockburst induced by the dynamic and static combined load, the source of dynamic and static load on the isolated working face is analyzed, and the rockburst monitoring methods and the prevention and control measures are proposed. Through the above research, the occurrence probability of rockburst can be effectively reduced, which is of great significance for the safe mining of deep coal mines.