• 제목/요약/키워드: isoflavone aglycones

Search Result 57, Processing Time 0.019 seconds

Antiinflammatory Activity of Naturally Occurring Flavone and Flavonol Glycosides

  • Lee, Song-Jin;Son, Kun-Ho;Chang, Hyeun-Wook;Do, Jae-Chul;Jung, Keun-Young;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.16 no.1
    • /
    • pp.25-28
    • /
    • 1993
  • Our previous report demonstrated that certain flavonoid aglycones such as apigenin (flavone), quercetin, morin (flavonols), and biochanin A (isoflavone) showed in vivo antiinflammatory activity via topical and oral routes of adminstation. As a continual study, the various flavonoid glycosides have been evaluated in mouse ear edema assay using archidonic acid or croton-oil as a inflammagen. Flavonoids were orally administered (2 mg/mouse) and ear edema inhibition was measured. Significant antiinflammatory activities were found esepcially in flavone and flavonol glycosides (15-29% inhibition) although the flavonoid derivatives tested showed less antiinflammatory activity than hydrocortisone or indomethacin. Chalcone and flavanone derivatives were not significantly active. And in general, flavonol glycosides of kaempferol-type were found to have a higher oral antiinflammatory activity than that of flavonol glycosides of quercetin-type in mice.

  • PDF

Soy Isoflavones and Soyasaponins: Characteristics and Physiological Functions

  • Lee, Yoon-Bok;Lee, Hyong-Joo;Kim, Chung-Ho;Lee, Soo-Bok;Sohn, Heon-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.49-57
    • /
    • 2005
  • Soy is an important food in Asia and many studies have suggested that the low incidences of chronic diseases in Asian countries are associated with diets that are rich in soy. Soy contains many kinds of phytochemicals, and soy isoflavones and soyasaponins have received considerable attention. Twelve isoflavone components have been isolated from soy: three aglycones (daidzein, genistein, and glycitein), and their respective nine glucosidic conjugates. Soy isoflavones are similar in structure to estrogen and exhibit both estrogenic and antiestrogenic activities. Soy isoflavones exhibit anticancer activity, can reduce the risk of cardiovascular disease, and are beneficial to brain and bone health. Soyasaponins are divided into three groups (A, B, and E saponins), and they exhibit hypocholesterolemic, anticancer, hepatoprotective, antioxidative, and anti-human-immunodeficiency-virus effects. Despite the abundant literature suggesting that soy isoflavones and soyasaponins have potential applications in preventive medicine, further research is needed to standardize dosages and ensure their efficacy.

Changes in nutritional components and antioxidant activities from soybean leaves containing high isoflavone contents according to different storage temperatures and periods (고 이소플라본 함유 콩잎의 저장 온도와 기간에 따른 영양학적 성분과 항산화 활성 변화)

  • Lee, Hee Yul;Lee, Dong Hee;Kim, Su Cheol;Cho, Du Yong;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.305-317
    • /
    • 2020
  • This study investigated that change of the nutrients (including fatty acids, amino acids, and minerals) and total phenolic (TP), total flavonoid (TF), and isoflavone contents and antioxidant activities during the storage of soybean leaves containing high isoflavone contents at 5, 25, and 55 ℃ for 180 days. The contents of free amino acids were increased from 1313.81 mg/100 g at 0 day to 1776.15, 1693.93 and 1551.18 mg/100 g at 5, 25, and 55 ℃ storage for 180 days, respectively, but the values of fatty acids were little unchanged. The contents of minerals were detected from 51.65 mg/100 g (0 day) to 49.93 (5 ℃), 50.20 (25 ℃), and 61.21 (55 ℃) mg/100 g at 180 days, respectively. The levels of total isoflavones did not change during the storage periods. In case of storage at 55 ℃, the contents of glycosides (1347.78→2195.13 ㎍/g) and aglycones (342.79→480.61 ㎍/g) increased during storage, while the levels of malonylglycosides (2209.22→1289.48 ㎍/g) decreased. Also, the TP and TF contents were slightly increased from 9.31 and 8.61 mg/g at 0 day to 9.97 and 9.3 mg/g at 180 days, corresponding to the radical scavenging activities of 2,2-diphenyl-1-picrydrazyl, 2,4,6-azino-bis (3-ethylbenzthiazoline-6-sulphnoic acid), and hydroxyl increased from 30.91, 55.98 and 23.27% from 37.10, 62.54, and 30.95%, respectively.

Changes in Contents of γ-Aminobutyric Acid (GABA) and Isoflavones in Traditional Korean Doenjang by Ripening Periods (전통된장의 숙성기간에 따른 γ-Aminobutyric Acid(GABA), Isoflavone 함량 변화)

  • Jo, Seong-Jin;Hong, Chung-Oui;Yang, Sung-Yong;Choi, Kyong-Kun;Kim, Hyeong-Kook;Yang, Hyok;Lee, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.557-564
    • /
    • 2011
  • This study was performed to investigate changes in ${\gamma}$-aminobutyric acid (GABA) and isoflavones in traditional Korean Doenjang according to ripening periods. The traditional Korean Doenjang used in this research was produced at Seowon Agricultural Cooperative in Gangwon-do Province, and samples fermented for periods of 1, 3, 5, 7, and 10 years were used. Doenjang that was not fermented after production was used as a control group. The analysis results of general constituents indicated a decreasing tendency for moisture after a momentary increase until three years of fermentation. The pH and Hunter color values of the Doenjang samples decreased overtime. In the case of amino acids, generally there were no notable differences during fermentation, but glutamic acid, the precursor of GABA, significantly decreased with fermentation. GABA content for the control group was $24.9{\pm}0.8\;mg$/kg, while the traditional Korean Doenjang fermented for 1 year contained $43.8{\pm}0.2\;mg$/kg and after 3 years it increased to $120.6{\pm}3.9\;mg$/kg. Furthermore, samples fermented for 5 and 7 years contained $569.5{\pm}3.9\;mg$/kg and $930.7{\pm}7.1\;mg$/kg, respectively, and a 10 year old specimen had 77 times more GABA than the control group, with $1,938.7{\pm}4.8\;mg$/kg. This confirmed that GABA content increased with fermentation time. There were no significant differences in the isoflavone glycosides daidzin, genistin, and glycitin, but genistein and daidzein, which are aglycones, increased along with fermentation period by the actions of enzymes and microorganisms during fermentation.

Fermented soybeans by Rhizopus oligosporus reduce femoral bone loss in ovariectomized rats

  • Yoo, Hyun-Wook;Chang, Moon-Jeong;Kim, Sun-Hee
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.539-543
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Soy isoflavones are structurally similar to estrogen and bind to estrogen receptors, suggesting that they exhibit estrogenic activities; therefore, they are referred to as phytoestrogens. Fermentation may affect the bioavailability of isoflavones altering soy isoflavone glycosides in the form of aglycones. Thus, this study investigated the effects of fermented soybeans by Rhizopus oligosporus on bone metabolism in both young rats as a pilot test and in ovariectomized (ovx) old rats as a model of menopause. MATERIALS/METHODS: In the pilot test, a total of 24 seven-week-old female Sprague-Dawley (SD) rats were fed one of three diets for a period of four weeks: casein, unfermented soybean product, or fermented soybean product by R. oligosporus. In the ovx rat model, 20-week-old SD rats weighing 260-290 g underwent either sham-operation (n = 10) or bilateral ovariectomy (n = 30) and were then fed the AIN-93M diet for one week. Thereafter, rats were fed sham-casein, ovx-casein, ovx-soybean, or ovx-fermented soybean diet for five weeks. After decapitation, femoral bones were isolated and preserved in 9% formalin for assessment of bone mineral density (BMD), bone mineral content (BMC), and bone-breaking strength (BBS). RESULTS: Ovx rats showed significantly increased weight gain and decreased uterine wet weight. Of particular interest, ovx rats fed fermented soybeans showed increased uterine wet weights compared to control rats. Fermented soybean diet caused a significant increase in plasma 17-${\beta}$ estradiol concentrations in young rats, and 17-${\beta}$ estradiol levels were enhanced in ovx rats to match those of sham-operated ones. Significantly lower femoral BMD and BMC were observed in ovx rats compared to sham-operated controls, whereas bone areas did not differ statistically among the groups. In addition, BBS tended to be increased in ovx rats fed soybeans and fermented soybeans. CONCLUSIONS: Supplementation of fermented soybeans could have preventive and therapeutic effects against osteoporosis in postmenopausal women.

Effect of ${\beta}$-Glucosidase as a Feed Supplementary on the Growth Performance, Digestive Enzymes and Physiology of Broilers

  • Qian, L.C.;Sun, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.260-266
    • /
    • 2009
  • The effects of ${\beta}$-glucosidase on the overall growth performance and a set of physiological parameters of broilers were investigated. 240 male, one-day old Avine broiler chickswere randomly allocated to four treatment groups and fed with a corn-soybean meal supplemented with 0% (control), 0.2%, 0.4% and 0.6% ${\beta}$-glucosidase. The 0.2% ${\beta}$-glucosidase group, but not the 0.4% and 0.6% ${\beta}$-glucosidase groups, showed a significantly increased average daily weight gain (p<0.05) over that of the control. All three ${\beta}$-glucosidase feed groups showed significantly higher feed conversion ratios than the control group (p<0.05). Feed supplementation of 0.2% ${\beta}$-glucosidase significantly raised the contents of serum isoflavone aglycones as shown by decreases of genistin and daizin (p<0.01) and an increase of daidzein (p<0.01). The 0.2% ${\beta}$-glucosidase feeding significantly increased the intestinal amylase activity while it had little effect on lipase and trypsin activities (p>0.05). 0.2% ${\beta}$-glucosidase feeding also significant elevated the levels of highdensity lipoprotein cholesterol and malate dehydrogenase while lowering the level of low-density lipoprotein cholesterol (LDL-C). Finally, ${\beta}$-glucosidase improved the anti-oxidative activities of the animals; the 0.2% ${\beta}$-glucosidase feed group had higher activities of superoxide dismutase (p<0.05), glutathione peroxidase and glutathione reductase in the liver (p<0.05), and malondialdehyde level in the serum (p<0.05).

Bioconversion of nutrient and phytoestrogen constituents during the solid-state fermentation of soybeans by mycelia of Tricholoma matsutake (송이버섯 균사체를 이용한 대두 고체발효 중 영양성분과 식물성 에스트로겐 성분의 생물전환)

  • Hee Yul Lee;Kye Man Cho;Ok Soo Joo
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1012-1028
    • /
    • 2023
  • The findings of this study confirmed the alteration of β-glucosidase activity, nutritional constituents, isoflavones, antioxidant activities, and digestive enzyme inhibition activities in soybeans during solid-state fermentation times with mycelia of Tricholoma matsutake. After nine days, the highest activity level was observed for β-glucosidase (3.90 to 38.89 unit/g) and aglycones (163.03 to 1,074.28 ㎍/g). The sum of isoflavones showed a significant decrease (3,489.41 to 1,325.66 ㎍/g) along with glycosides (2,753.87 to 212.43 ㎍/g) for fermentation, while fatty acids showed a slight increase and amino acids showed a marked increase. Total phenolic and flavonoid contents showed a corresponding increase according to fermentation times (5.58 to 15.09 GAE mg/g; 0.36 to 1.58 RE mg/g). Antioxidant and enzyme inhibition activities also increased; in particular, the highest level of scavenging activities was observed for ABTS (up 60.13 to 82.08%), followed by DPPH (up 63.92% to 71.98%) and hydroxyl (up 36.01 to 52.02%) radicals. Of particular interest, α-glucosidase (6.69 to 83.49%) and pancreatic lipase inhibition (1.22 to 77.43%) showed a marked increase. These results demonstrated that fermentation of soybeans with the mycelia of T. matsutake enhanced the nutritional and functional constituents, and the biological activities of soybeans. Thus, this fermentation technology can be used to produce a novel functional materials from soybeans.