• Title/Summary/Keyword: islet cells

Search Result 89, Processing Time 0.026 seconds

Immunohistochemistry of the Pancreatic Endocrine Cells of the Red-eared Slider (Trachemys scripta elegans)

  • Ku, Sae-Kwang;Lee, Hyeung-Sik;Lee, Jae-Hyun;Park, Ki-Dae
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 2000
  • Regional distribution and relative frequency of endocrine cells in the pancreas of the red-eared slider, Trachemys scripta elegans, were investigated by immunohistochemical methods. Chromogranin (Cg) A-, serotonin-, insulin-, glucagon-, somatostatin-, bovine pancreatic polypeptide (BPP)- and human pancreatic polypeptede (HPP)-immunoreactive cells were identified in this study. Most of immunoreactive cells in the exocrine and endocrine pancreas (Langerhans islet) were generally spherical or spindle-shaped (open-typed cell), while occasionally cells round in shape (close-typed cell) were found in the basal portion or interepithelial regions of the pancreatic duct. These immunoreactive cells were located in the exocrine, endocrine pancreas and/or basal or interepithelial portion of the pancreatic duct. Serotonin-immunoreactive cells were found in the basal portion of epithelia of the pancreatic duct at a low frequency and interacinar region of the exocrine at a moderate frequency. Insulin-immunoreactive cells were found in the central portion of the endocrine pancreas, interacinar regions of the exocrine pancreas and basal portion of the epithelia of the pancreatic duct at high, moderate and low frequencies, respectively. Glucagon-immunoreactive cells were detected in the periphery of the endocrine pancreas, interacinar region of the exocrine pancreas and basal portion of the epithelia or interepithelia of the pancreatic duct at high, moderate and moderate frequencies, respectively. Somatostatin-immunoreactive cells were dispersed in the whole area of the endocrine pancreas, interacinar regions of exocrine pancreas and basal portion of the epithelia or interepithelia of the pancreatic duct at a moderate frequency. BPP- and HPP-immunoreactive cells were detected in the iinteracinar region of the exocrine pancreas at moderate and hige frequencies, respectively. However, no Cg A- and motilin-immunoreactive cells were detected in this study.

  • PDF

Immunohistochemical study on the gastro-entero-pancreatic(GEP) endocrine cells of the blue fox, Alopex lagopus (북극여우의 위장췌 내분비세포에 관한 면역조직화학적 연구)

  • Lee, Jae-hyun;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.579-589
    • /
    • 1993
  • The regional distribution and the relative frequencies of endocrine cells were studied in nine portions of the blue fox GI tract, and the distribution pattern and cell types of the pancreativc endocrine cells were also studied in the pancreas by immunohistochemical method. Six kinds of immunoreactive cells were identified in the GI tract, and four kinds of immunoreactive cells were also identified in the pancreas. Although numerous 5-HT- and somatostatin-immunoreactive cells were seen throughout the GI tract, somatostatin- immunoreactive cells were a few in the intestine. Very numerous Gas/CCK-immunoreactive cells were restricted generally in the pyloric region and duodenum. Numerous glucagon-immunoreactive cells were found in the stomach except the pyloric region, and generally a few in the intestine. Moderate number of BPP-immunoreactive cells were found in the stomach except the pyloric region, and a few in the large intestine. Numerous porcine CG-immunoreactive cells were restricted to the cardiac and fundic region. In the pancreas, four types of pancreatic endocrine cells- somatostatin-, glucagon-, BPP- and insulin-immunoreactive- were identified in the pancreatic islet and exocrine portion. These results suggest that the regional distribution, the relative frequencies and cell types of the GEP endocrine cells in the GI tract and pancreas varies considerably among the species.

  • PDF

Fine Needle Aspiration Cytology of Solid and Papillary Neoplasm of the Pancreas -Report of a Case- (췌장의 고형성 유두상 암종의 세침흡인 세포학적 소견)

  • Cho, Mee-Yon;Lee, Kwang-Gil;Lee, Kyi-Beom;Jeong, Hyeun-Joo;Jung, Woo-Hee
    • The Korean Journal of Cytopathology
    • /
    • v.1 no.1
    • /
    • pp.85-92
    • /
    • 1990
  • We present the cytologic features of a case of solid and papillary neoplasm of the pancreas. Cytologically, the tumor was composed of a monotonous population of polygonal cells containing eccentrically located round nuclei with one or two distinct small nucleoli and a finely stippled chromatin pattern. The tumor cells were similar to those of the islet cell tumor and showed isolated loosely aggregated and solid sheets or large cell clumps. The large cell clumps revealed a branching papillary structure containing fibrovascular central core, which is characteristic histologic feature of solid and papillary neoplasm of the pancreas. This case was confirmed by tissue examination including histochemical, immunohistochemical and electron microscopical studies. Ultrastructurally, the tumor cells contained a few membrane- bound electron dense granules.

  • PDF

Prevention of Diabetes Using Adenoviral Mediated Hepatocyte Growth Factor Gene Transfer in Mice

  • Lee, Hye-Jeong;Kim, Hyun-Jeong;Roh, Mee-Sook;Lee, Jae-Ik;Lee, Sung-Won;Jung, Dong-Sik;Kim, Duk-Kyu;Park, Mi-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.261-266
    • /
    • 2003
  • Type 1 diabetes is an organ-specific autoimmune disease caused by the cytotoxic T cells-mediated destruction of the insulin-producing beta cells in the Langerhans pancreatic islets. Hepatocyte growth factor (HGF) is a potent mitogen and a promoter of proliferation of insulin producing beta cells of pancreatic islets. To study the role of HGF via viral vector in the development of streptozotocin (STZ)-induced diabetes in mice, we have developed an adenoviral vector genetically engineered to carry the gene for human HGF (hHGF) and evaluate the change of blood glucose, insulin level, and insulin-secreting beta cells of pancreatic islets. We demonstrate that the treatment with hHGF gene prevented the development of STZ-induced diabetes and increased serum insulin level to above normal range. Furthermore, it preserved pancreatic beta cells from destruction. These in vivo results may support previous findings that HGF is insulinotropic agent for beta cells and HGF treatment renders the cells to be resistant to the development of diabetes from STZ administration. We suggest that an adenoviral mediated hHGF gene therapy is a good candidate for the prevention and treatment of type 1 diabetes.

An Anatomical and Histochemical Study of the Olfactory Organ in Rice-fish Oryzias sinensis(Pisces: Adrianichthyidae) in South Korea (한국산 대륙송사리 Oryzias sinensis(Pisces: Adrianichthyidae) 후각기관의 해부 및 조직화학적 연구)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.28 no.4
    • /
    • pp.223-228
    • /
    • 2016
  • The anatomy and histology of the olfactory organ in Oryzias sinensis was researched using a stereo microscope and light microscope. In the gross structure, the paired olfactory organs on the dorsal part of the head consist of two nostrils (a circular anterior nostril and a slit posterior nostril in a distance), a single olfactory chamber and a single accessory nasal sac. In the histological study, the epithelium of the olfactory chamber is classified into both sensory and non-sensory regions. The sensory epithelium consists of olfactory receptor neurons, supporting cells, basal cells and vesicles, and is islet in distributional pattern. The non-sensory epithelium is composed of stratified epithelial cells and two types of mucous cells (acidic and neutral cells). The epithelium of the accessory nasal sac has swollen stratified epithelial cells, mucous cells with a rich glycoprotein. Such an olfactory anatomy and histology of O. sinensis may reflect its habitat surrounding stagnant and polluted water.

Current Status of Stem Cell Treatment for Type I Diabetes Mellitus

  • Kakkar, Anupama;Sorout, Ashima;Tiwari, Mahak;Shrivastava, Pallavi;Meena, Poonam;Kumar Saraswat, Sumit;Srivastava, Supriya;Datt, Rajan;Pandey, Siddharth
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.699-709
    • /
    • 2018
  • BACKGROUND: Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS: Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into ${\beta}$ islet cells. RESULTS: These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION: Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.

Protective Effects of Cinnamomi Ramulus Herbal Acupuncture on $\beta$-cell Damage of Streptozotocin-induced Diabetic Rat (계지약침(桂枝藥鍼)이 Streptozotocin 유도 당뇨 흰쥐의 췌장세포 손상에 미치는 보호 효과)

  • Seo, Chang-Wan;Lee, Sang-Hoon;Park, Dong-Suk;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.26 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • Objectives : For evaluation of preventive and anti-diabetic activities of Cinnamomi ramulus(CR) herbal acupuncture on pancreatic islet damage in streptozotocin(STZ)-induced diabetic rat. Methods : CR herbal acupuncture was performed at Bisu($BL_{20}$) for 3 weeks subcutaneously starting1 week before STZ i.p. injection. SD rats were divided into four groups(n=10 for each group); 1) NC group, non-treated normal control group, 2) STZ group, STZ administered control group, 3) CR125 group, CR(125mg/kg) + STZ administered group, and 4) CR250 group, CR(250mg/kg) + STZ administered group. Results : Both of CR250 and CR125 groups showed increase in insulin secretion and decrease in the level of serum triglyceride and non-esterified fatty acid in a dose-dependent manner compared to the STZ group. Only CR250 group showed decrease in the levels of glucose and total cholesterol compared to the STZ group. CR herbal acupuncture prevents $\beta$-cell damage of pancreatic islet, showing round figure on the sections of the pancreas. In the pancreatic cells, expressions of iNOS, JNK-2, P-JNK-1/2 and ERK-1/2 were decreased compared to the STZ group. CR herbal acupuncture solution did not show any cytotoxicity by MTS assay and inhibited expressions of iNOS and COX-2 in the STZ-induced diabetic rats. Conclusions : Therefore, we suggest that CR herbal acupuncture may act as a prophylactic as well as a therapeutic modality for diabetes mellitus.

  • PDF

Both sitagliptin analogue & pioglitazone preserve the β-cell proportion in the islets with different mechanism in non-obese and obese diabetic mice

  • Yeom, Jin-A;Kim, Eun-Sook;Park, Heon-Seok;Ham, Dong-Sik;Sun, Cheng-Lin;Kim, Ji-Won;Cho, Jae-Hyoung;Yoon, Kun-Ho
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.713-718
    • /
    • 2011
  • In this study, the effects of sitagliptin analogue (SITA) or pioglitazone (PIO) treatment on glucose homeostasis and ${\beta}$-cell dynamics in animal models of type 2 diabetes-Akita and db/db mice were evaluated. After 4-6 weeks of treatment, both SITA and PIO were shown to lower non-fasting glucose levels and reduced glycemic excursion in the intraperitoneal glucose tolerance test. In addition, both drugs preserved normal islet structure and the proportion of ${\beta}$-cells in the islets. Compared to the controls, SITA treatment induced a higher ${\beta}$-cell proliferation rate in Akita mice and a lower rate of apoptosis in db/db mice, whereas PIO treatment induced a lower rate of apoptosis in db/db mice and reduced proliferation rates in Akita mice. In conclusion, both SITA and PIO appear to exert some beneficial effects on the islet structure in addition to glycemic control via different mechanisms that involve ${\beta}$-cell dynamics in Akita and db/db mice.

Anti-diabetic Mechannism Study of Korean Red Ginseng by Transcriptomics (전사체 프로파일을 이용한 고려 홍삼의 항당뇨 기전 연구)

  • Yuan, Hai-Dan;Shin, En-Jung;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.345-354
    • /
    • 2008
  • This study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng extract through transcriptomics in C57BL/KsJ db/db mice. The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. At the end of treatment, we measured blood glucose, insulin, hemoglobin A1c (HbA1c), triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). RGL-treated group lowered the blood glucose and HbA1c levels by 19.6% and 11.4% compared to those in diabetic control group. In addition, plasma adiponectin and leptin levels in RGL-treated groups were increased by 20% and 12%, respectively, compared to those in diabetic control. Morphological analyses of liver, pancreas and epidydimal adipose tissue were done by hematoxylin-eosin staining, and pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. RGL-treated group revealed higher insulin contents and lower glucagon contents compared to diabetic control. To elucidate an action mechanism of Korean red ginseng, DNA microarray analyses were performed in liver and fat tissues, and western blot and RT-PCR were conducted in liver for validation. According to hierarchical clustering and principal component analysis of gene expression Korean red ginseng treated groups were close to metformin treated group. In summary, Korean red ginseng lowered the blood glucose level through protecting destruction of islet cells and shifting glucose metabolism from hepatic glucose production to glucose utilization and improving insulin sensitivity through enhancing plasma adiponectin and leptin levels.

Pretreatment with Nicotinamide to Prevent the Pancreatic Enzymes Changes by Streptozotocin in Rats (고혈당 쥐의 췌장 효소활성에 미치는 Nicotinamide의 영향)

  • 손기호;김석환;최종원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • The present study was undertaken in order to elucidate the effects of pretreatment with nicotinamide on changes in serum glucose level, body weight, water consumption, serum insulin concentration, and the activity of pancreatic enzyme in rats treated with streptozotocin (STZ). Histological studies were also carried out to evaluate the effects on pancreatic tissues and Langerhans's islet cells. Nicotinamide pretreatment in STZ diabetic rats inhibited the rise of fasting serum glucose concentration and water consumption. Pretreatment with nicotinamide significantly increased the concentration of serum insulin and body weight changes compared to the STZ-treated group. Pancreatic lipase and trypsin activities were increased, but amylase activity was decreased and pancreatic $\beta$ -cell was destroyed by STZ. Pvetreatment with nicotinamide prevented these STZ-induced changes. These results suggest that nicotinamide pretreatment supresses STZ-induced changes in pancreatic enzymes by preventing $\beta$-cell destruction and therefore maintaining a normal serum insulin revel.

  • PDF