• Title/Summary/Keyword: ischemic damage

Search Result 284, Processing Time 0.03 seconds

Effects of Samul-tang-gamibang against Focal Cerebral Ischemic Damage by Middle Cerebral Artery Occulusion of Rats (사물탕가미방이 백서의 좌우 중대뇌 동맥 폐쇄에 의한 뇌허혈 손상의 회복에 미치는 효과)

  • 서창훈;김영균;권정남
    • The Journal of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.117-128
    • /
    • 2004
  • Objectives : This research was performed to investigate effect of Samul-tang-gamibang against focal cerebral ischemic damage after middle cerebral artery occlusion(MCAO). Methods : This research was used rats which were against focal cerebral ischemic damage by MCAO. It was used Zea Longa's theory and Belayev's methods to give rise to focal cerebral ischemic damage by MCAO. After 7days later, we drew out the brain and then had frozen and dyeing it and we had taken a picture to measure of the damaged area in each brain section. We determined the Neurological Index and tested the Foot-fault test and Roatated test to appraise the fall of motion ability result from cerebral ischemic damage. Results : The results of the experiment are as follows. 1. Samul-tang-gamibang reduced infarct size of sample group compared to control group at 7 day after MCAO. 2. Samul-tang-gamibang reduced infarct volume of sample group compared to control group at 7 day after MCAO. 3. Samul-tang-gamibang reduced foot-fault index of sample group compared to control group at 5,7 day after MCAO. Conclusions : Samul-tang-gamibang has protective effects against ischemic brain damage and had significant reduced infarct size and infarct volume of Rt-MCAO.

  • PDF

Effects of Seongpung-tang on the NO Production of Primary Microglial Cell (성풍탕이 미세아교세포의 NO 생성에 미치는 영향)

  • 성강경;임창용;이상관
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • The water extract of Seongpungtang(SPT) has commonly been used for treatment of ischemic brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extract of SPT rescues brain cells from ischemic damage. To elucidate the protective mechanism of ischemic induced cytotoxicity, the regulation of Lipopolysaccharide (LPS) and PMA (phobol-12-myristate-13-acetate) induced iNOS expression in microglial cells was investigated. LPS and PMA treatment for 48 hr in microglial cells markedly induced nitric oxide (NO), but treatment of the cells with the water extract of SPT decreased nitrite formation. In addition, LPS and PMA treatment for 48 hr induced severe cell death in microglial cells. However treatment of the cells with the water extract of SPT did not induce significant changes compared to the control cells. Furthermore, NO production was markedly decreased by treatment of nuclear factor kappa B(NF-kB) inhibitor, pyrrolidine dithiocarbamate(PDTC). According to the above results, it is suggested that the protective effects of the water extract of SPT against ischemic brain damage may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Effects of GR89696 on parvalbumin positive neurons after cerebral ischemia in the Mongolian gerbil (몽고리안 저빌에서 뇌허혈시 GR89696이 parvalbumin 발현 신경세포에 미치는 영향)

  • Kwon, Young-bae;Yang, Il-suk;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.1
    • /
    • pp.34-44
    • /
    • 1999
  • Ischemic damage in the selectively vulnerable populations of neurons is thought to be caused by an abnormal accumulation of intracellular calcium. It has been reported that the neurons, expressing specific calcium binding proteins, might effectively control intracellular calcium concentrations because of a high capacity to buffer intracellular calcium in the brain ischemic condition. It is uncertain that parvalbumin, one of the calcium binding proteins, can protect the neurons from the cerebral ischemic damage. Recently, treatment of kappa opioid agonists increased survival rate, improved neurological function, and decreased tissue damage under the cerebral ischemic condition. Many evidences indicate that these therapeutic effects might result from regulation of calcium concentration. This study was designed to analyze the changes of number in parvalbumin-positive neurons after cerebral ischemic damage according to timepoints after cerebral ischemic induction. In addition, we evaluated the effect of GR89696 (kappa opioid agonist) or naltrexone(non selective opioid antagonist) on the changes of number in parvalbumin expressing neurons under ischemic condition. Cerebral ischemia was induced by occluding the common carotid artery of experimental animals. The hippocampal areas were morphometrically analyzed at different time point after ischemic induction(1, 3, 5 days) by using immuno-histochemical technique and imaging analysis system. The number of parvalbumin-positive neurons in hippocampus was significantly reduced at 1 day after ischemia(p<0.05). Furthermore, the number of parvalbumin-immunoreactive neurons was dramatically reduced at 3 and 5 days after cerebral ischemic induction(p<0.05) as compared to 1 day group after ischemia, as well as sham control group. Significant reduction of parvalbumin positive neurons in CA1 region of hippocampus was observed at 1 day after cerebral ischemic induction. However, significant loss of MAP2 immunoreactivity was observed at 3 day after cerebral ischemia. The loss of parvalbumin-positive neurons and MAP2 immunoreactivity in CA1 region was prevented by pre-administration of GR89696 compared to that of saline-treated ischemic group. Furthermore, protective effect of GR89696 partially reversed by pre-treatment of naltrexone. These data indicate that parvalbumin-positive neurons more sensitively responded to cerebral ischemic damage than MAP2 protein. Moreover, this loss of parvalbumin-positive neurons was effectively prevented by the pretreatment of kappa opioid agonist. It was also suggested that the changes of number in parvalbumin-positive neurons could be used as the specific marker to analyze the degree of ischemic neuronal damage.

  • PDF

Effect of Chengsimyeunja-eum (淸心蓮子飮) and Sunghyangjungi-san (星香正氣散) on Streptozotocin-induced Ischemic Damaged Diabetic Rats (청심연자음(淸心蓮子飮)과 성향정기산(星香正氣散)이 Streptozotocin유발(誘發) 당뇨(糖尿)흰쥐의 뇌허혈 손상(腦虛血 損傷)에 미치는 영향(影響))

  • Park, Soon-Il;Lee, Won-Chul
    • The Journal of Korean Medicine
    • /
    • v.28 no.3 s.71
    • /
    • pp.216-231
    • /
    • 2007
  • Objectives : Chengsimyeunja-eum and Sunghyangjungi-san are prescriptions used for cerebral infarction clinically; it is known that these formulas reduce ischemic damage. According to previous research data, controlling certain types of glucose is considered to decrease the risk of cerebral infarction. Based on this fact, we investigated the effects of Chengsimyeunja-eum and Sunghyangjungi-san extracts on reperfusion following ischemic damage to diabetic rats, the change of c-FOS and Bax positive neurons in the hippocampus and cerebral cortex and protein through immunohistochemical methods, changes of serum glucose level, serum triglyceride level, and hepatic glucokinase activity. Methods : We induced ischemic damaged in diabetic rats, and the rats were administered Chengsimyeunja-eum and Sunghyangjungi-san extracts. Results : Chengsimyeunja-eum demonstrated significant decrease of c-Fos positive neurons in both hippocampus and cerebral cortex as well as a significant decrease of Bax positive neurons in hippocampus after ischemic damage on diabetic rats and decrease of serum glucose level after ischemic damage on diabetic rats. Sunghyangjungi-san demonstrated significant decreases of c-Fos and Bax positive neurons in both hippocampus and cerebral cortex after ischemic damage on diabetic rats. Conclusions : Chengsimyeunja-eum, effect on glucose level control, has a remarkable effect of protection of neurons not effective on glucose level. Sunghyangjungi-san showed neuroprotective effect through preventing neuronal cell death.

  • PDF

Protective Effects of Gamiheechum-tang(Jiaweixiqian-tang) on Hypertension and Brain Damage (가미치첨탕이 고혈압 및 뇌손상에 미치는 효과)

  • Ryu, Jong-Sam;Kim, Dong-Hee;Park, Jong-O;Namgung, UK;Hong, Seok
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.72-83
    • /
    • 2003
  • Objective : The goal of the present study was to investigate the protective effect of Gamiheechum-tang (Jiaweixiqian-tang; GHCT) on brain tissue damage from chemical or ischemic insults. Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GHCT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : Animal groups treated with GBCT showed significantly decreased hypertension, and reduced levels of aldosterone, dopamine, and epinephrine in the plasma. GHCT treatments ($l0-200\mu\textrm{g}/ml$) significantly decreased cultured cortical neuron death mediated by AMPA, kainate, BSO, or Fe2+ when measured by LDH release assay. Yet, cell death mediated by NMDA was effectively protected by GHCT at the highest concentration examined ($200\mu\textrm{g}/ml$). In the in vivo experiment examining brain damage by MCA occlusion, affected brain areas by ischemic damage and edema were significantly less in animal groups administered with GHCT compared to the non-treated control group. Neurological examinations of forelimbs and hindlimbs showed that GHCT treatment improved animals' recovery from ischemic injury. Moreover, the extent of injury in cortical and hippocampal pyramidal neurons in ischemic rats was much reduced by GHCT, whose morphological features were similarly observed in non-ischemic animals. Conclusion : The present data suggest that GBCT may play an important role in protecting brain tissues from chemical or ischemic injuries.

  • PDF

Pre-ischemic Treatment with Ampicillin Reduces Neuronal Damage in the Mouse Hippocampus and Neostriatum after Transient Forebrain Ischemia

  • Lee, Kyung-Eon;Kim, Seul-Ki;Cho, Kyung-Ok;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.287-291
    • /
    • 2008
  • Ampicillin, a $\beta$-lactam antibiotic, has been reported to induce astrocytic glutamate transporter-l which plays a crucial role in protecting neurons against glutamate excitotoxicity. We investigated the effect of ampicillin on neuronal damage in the mouse hippocampus and neostriatum following transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery for 40 min. Ampicillin was administered post-ischemically (for 3 days) and/or pre-ischemically (for $3{\sim}5$ days until one day before the onset of ischemia). Pre- and post-ischemic treatment with ampicillin (50 mg/kg/day or 200 mg/kg/day) prevented ischemic neuronal death in the medial CAI area of the hippocampus as well as the neostriatum in a dose-dependent manner. In addition, ischemic neuronal damage was reduced by pre-ischemic treatment with ampicillin (200 mg/kg/day). In summary, our results suggest that ampicillin plays a functional role as a chemical preconditioning agent that protects hippocampal neurons from ischemic insult.

Protective Effect of Bupleuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 시호 세포보호효과)

  • 최삼열;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.113-124
    • /
    • 2002
  • Objects: This research was conducted to investigate the protective effect of Bupleuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils, Methods: To observe the protective effect of Bupleuri Radixon ischemic damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Bupleuri Radix during ischemic damage. Gerbils were divided into three groups: a normal group, a 5-minute two-vessel occlusion (2VO) group and a Bupleun Radix administered group after 2VO. The CCAs were occluded by microclip for 5 minutes, Bupleuri Radix was administered orally for 7 days after 2VO. Histological analysis was performed on the 7th day. For histological analysis, the brain tissue was stained with 1 % of cresyl violet solution. Results: 1. Bupleuri Radix has a protective effect against ischemia in the CA1 area of the gerbil's hippocampus 7 days after 5-minute occlusion. 2. In the hypoxia/reperfusion model using PC12 cells, the Bupleuri Radix has a protective effect against ischemia in the dose of 0.2{\;}\mu\textrm{g}/ml,2{\;}\mu\textrm{g}/ml{\;}and{\;} 20{\;}\mu\textrm{g}/ml$. 3. Bupleuri Radix increased the activities of glutathione peroxidase and catalase. 4. The increased activity of superoxidedismutase (SOD) by ischemic damage might have been induced as an act of self-protection. This study suggests that Bupleuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils. Bupleuri Radix also has protective effect on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions: Bupleuri Radix has protective effect against ischemic brain damage during the early stages of ischemia.

  • PDF

Influence of Ischemic Duration on Extent of Focal Ischemic Brain Injury Induced by Middle Cerebral Artery Occlusion in Rats (백서의 중대뇌동맥 페쇄에 의한 국소 허혈성 뇌손상의 정도에 미치는 허혈 시간의 영향)

  • 구희정;정경자;김명수;진창배
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.160-166
    • /
    • 2000
  • The present study examined influence of various ischemic duration on extent of focal ischemic brain injury induced by middle cerebral artery occlusion (MCAO) in rats. The MCAO was produced by insertion of a 17 mm silicone-coated 4-0 nylon surgical thread to the origin of MCA through the internal carotid artery for 30, 60, 90, 120 min (transient) or 24 hr (permanent) in male Sprague-Dawley rats under isoflurane anesthesia. Reperfusion in transient MCAO models was achieved by pulling the thread out of the internal carotid artery. Only rats showing neurological deficits characterized by left hemiparesis and/or circling to the left, were included in cerebral ischemic groups. The rats were sacrificed 24 hr after MCAO and seven serial coronal slices of the brain were stained with 2,3,5-triphenyltetrazolium chloride. Infarct size was measured using a computerized image analyzer. Ischemic damage was common in the frontoparietal cortex (somatosensory area) and the lateral segment of the striatum while damage to the medial segment of the striatum depended on the duration of the occlusion. In the 30-min MCAO grouts, however, infarcted region was primarily confined to the striatum and it was difficult to clearly delineate the region since there was mixed population of live and dead cells in the nucleus. Infarct volume was generally increased depending on the duration of MCAO, showing the most severe damage in the permanent MCAO group. However, there was no significant difference in infarct size between the 90-min and 120-min MCAO groups. % Edema also tended to increase depending on the duration of MCAO. The results suggest that the various focal ischemic rat models established in the present study can be used to evaluate in vivo neuroprotective activities of candidate compounds or to elucidate pathophysiological mechanisms of ischemic neuronal cell death.

  • PDF

Effects of Purgative Action with Natrii Sulfas on Bax and HSP72 Expressions of the MCAO Rat Brain (망초(芒硝)의 사하작용(瀉下作用)이 MCAO 흰쥐 뇌조직의 Bax 및 HSP72 발현에 미치는 영향)

  • Kim, Kon-Sik;Kim, Bum-Hoi;Lee, Dong-Eun;Yang, Kee-Young;Kim, Seong-Joon;Kang, Hee;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.818-824
    • /
    • 2009
  • This study aimed to evaluate the effect of purgation therapy with Natrii sulfas, a therapy for stroke patients with constipation in the oriental medicine, on the ischemic brain damage of the rats. The ischemic brain damage was induced by the middle cerebral artery occlusion (MCAO), Natrii sulafas was administered once after the MCAO. After 48 hours, expressions of Bax, Bcl-2, c-Fos, and HSP72 on the brain tissues were observed by immunohistochemistrical methods or technique. Purgation therapy with Natrii sulfas attenuated the excess of Bax expression caused by the ischemic brain damage. It was significant statistically in the penumbra of cerebral cortex, but not in the caudate putamen, of the MCAO rats. Purgation therapy with Natrii sulfas did not attenuate the excess of Bcl-2 expression caused by the ischemic brain damage. Purgation therapy with Natrii sulfas did not attenuate the excess of c-Fos expression caused by the ischemic brain damage. Purgation therapy with Natrii sulfas attenuated the excess of HSP72 expression caused by the ischemic brain damage. It was significant statistically in the penumbra of cerebral cortex, but not in the caudate putamen, of the MCAO rats. These results suggest that purgation therapy with Natrii sulfas has a neuroprotective effect on the ischemic brain damage and an anti-apoptotic effect.

Differential Expression Patterns of Gangliosides in the Ischemic Cerebral Cortex Produced by Middle Cerebral Artery Occlusion

  • Kwak, Dong Hoon;Kim, Sung Min;Lee, Dea Hoon;Kim, Ji Su;Kim, Sun Mi;Lee, Seo Ul;Jung, Kyu Yong;Seo, Byoung Boo;Choo, Young Kug
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.354-360
    • /
    • 2005
  • Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.