• 제목/요약/키워드: ischemic brain

검색결과 508건 처리시간 0.038초

Acute Ischemic Stroke in Moyamoya Syndrome Associated with Thyrotoxicosis

  • Kang, Donggook;Seong, Gi-Hun;Bae, Jong Seok;Lee, Ju-Hun;Song, Hong-Ki;Kim, Yerim
    • 대한신경집중치료학회지
    • /
    • 제11권2호
    • /
    • pp.129-133
    • /
    • 2018
  • Background: A few cases of moyamoya syndrome associated with thyrotoxicosis have been reported. However, studies on the association of hyperthyroidism with moyamoya syndrome are insufficient. Case Report: Here we report a case of hyperthyroidism associated with moyamoya syndrome in a 41-year-old woman with aphasia and right side weakness. Brain imaging revealed acute cerebral infarction of left middle cerebral artery territory and occlusion of bilateral distal internal carotid arteries. Conclusion: Antithyroid medication stabilized the patient's neurologic deterioration, suggesting that thyrotoxicosis could aggravate acute cerebral infarction caused by moyamoya syndrome.

Neuroprotective Mechanisms of Aloesin against Focal Ischemic Brain Injury

  • Lee, Moon-Jung;Cho, Eun-Young;Lee, Yong-Ha;Jung, Kyung-Ja;Song, Yun-Seon;Jin, Chang-Bae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.303.1-303.1
    • /
    • 2002
  • Recent studies have suggested that the cerebral ischemia induced the neuronal cell death by mediating multiple mechanisms with necrosis and/or apoptosis. The present study examined neuroprotective mechanism of aloesin against transient focal cerebral ischemia. Aloesin. main component of aloe possesses various biological activates such as wound healing. anti-gastric ulcer. and chemopreventive activity. Transient focal cerebral ischemia was induced by 120 min MCAO. (omitted)

  • PDF

Microglial activation and tyrosine hydroxylase immunoreactivity in the substantia nigral region following transient focal ischemia in rats

  • Jung, Ji-Wook;Oh, Jin-Kyung;Huh , Young-Buhm;Ryu, Jong-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.305.1-305.1
    • /
    • 2002
  • The temporal profiles of the changes of dopaminergic cell and microglial activation induced by transient cerebral ischemia was investigated in the substantia nigral region which lay outside ischemic areas of rat brain after middle cerebral artery occlusion (MCAO). Transient cerebral ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 2 hand reperfusion was continued for 1, 2. 3. 7. 10. 14. 30, 60. and 120 days. Activated microglial cells were visualized with immunohistochmistry using OX-43 antibody. (omitted)

  • PDF

Cerebral salt wasting syndrome caused by external lumbar drainage in a patient with chronic hydrocephalus

  • Yoo, Je Hyun;Park, Ki Deok;Lim, Oh Kyung;Lee, Ju Kang
    • Annals of Clinical Neurophysiology
    • /
    • 제24권1호
    • /
    • pp.30-34
    • /
    • 2022
  • In cases of hyponatremia induced by brain damage, it is important to distinguish between the syndrome of inappropriate anti-diuretic hormone secretion (SIADH) and cerebral salt wasting syndrome. A ventriculoperitoneal (VP) shunt is the standard treatment for hydrocephalus, and external lumbar drainage (ELD) is an option to evaluate the effect of a VP shunt. However, ELD has potential complications, such as subarachnoid hemorrhage, meningitis, and rarely hyponatremia. Therefore, we report a case of a patient with cerebral salt-wasting syndrome resulting from ELD to treat normal-pressure hydrocephalus during the rehabilitation of acute ischemic stroke.

단천환이 Hydrogen Peroxide에 의한 심근세포 독성에 미치는 영향 (Effects of Dancheonhwan on Hydrogen Peroxide-induced Apoptosis of H9c2 Cardiomyoblasts)

  • 나영훈;박상범;정승원;윤종민;이인;문병순
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.774-782
    • /
    • 2004
  • The water extract of Dancheonhwan (DCH) has been used to treat ischemic brain and heart damage in oriental medicine. However, little is known about the mechanism by which the water extract of DCH rescues cells from ischemic damage. Therefore, this study was designed to investigate the protective mechanisms of DCH on the H₂O₂-induced toxicity in H9c2 cardiomyoblast cells. Treatment of H₂O₂ markedly decreased the viability of H9c2 cardiomyoblast in a dose-dependent and time-dependent manner. The nature of H₂O₂-induced toxicity of H9c2 cells resulted from apoptotic death confirmed with genomic DNA fragmentation. DCH increased the viability of H₂O₂-treated H9c2 cells by about 23%, and partially suppressed the genomic DNA fragmentation and PARP cleavage. H₂O₂ also activated caspase-3 protease and -9 protease, but not both caspase-6 protease and -8 protease. H₂O₂ induced the mitochondria dysfunction, including mitochondria membrane permeability transition (MPT) and cytosolic release of cytochrome c from mitochondria, which was prevented in part by pretreatment of DCH. N-acetylcystein (NAC), a free-radical scavenger, alone increased the viability of H₂O₂-treated H9c2 cells in a dose-dependent manner. Furthermore, the combination of NAC with DCH significantly increased the viability of the H₂O₂-treated H9c2 cells in a dose-dependent manner. These data indicate that DCH has the protective effect on ROS-induced apoptosis of cadiomyoblast H9c2 cells.

The effect of physical training on glutamate transporter expression in an experimental ischemic stroke rat model

  • Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Rehabilitation Science
    • /
    • 제2권2호
    • /
    • pp.87-91
    • /
    • 2013
  • Objective: The present study was aimed at determining the effect of physical training on glutamate transporter activity in a middle cerebral artery occlusion (MCAO)-induced ischemia injury rat model. Design: Randomized controlled trial. Methods: In this study, we randomly divided them into three groups. Group I included non-occlusion sham controls (n=10), Group II included non-physical training after MCAO (n=10), and Group III included rats that were subjected to physical training after MCAO (n=10). Rats in the physical training group underwent treadmill training, which began at 24 h after MCAO and continued for 14 consecutive days. The training intensity was gradually increased from 5 m/min on the first day to 12 m/min on day 3, and it was maintained until day 14. Focal cerebral ischemia was examined in adult male Sprague-Dawley rats by using the MCAO model. We determined the functional outcomes for each rat on days 1, 7, and 14. Glutamate transporter-1 (GLT-1) activity in the cortex of rats from all three groups was examined at the end of the experiment. Results: Out result show that MCAO rats exhibited severe neurological deficits on the 1 day, and there was no statistically significant in each groups. We observed that the functional outcomes were improved at days 7 and 14 after middle cerebral artery occlusion, and GLT-1 activity was increased in the physical training group (p<0.05). Conclusions: These results indicated that physical training after focal cerebral ischemia exerts neuroprotective effects against ischemic brain injury by improving motor performance and increasing the levels of GLT-1 activity.

저산소성 허혈성 뇌병변 환아에서 혀내밀기에 의해 발생된 혀 궤양의 치료: 증례 보고 (TREATMENT OF LINGUAL ULCERS CAUSED BY TONGUE THRUST WITH HYPOXIC-ISCHEMIC ENCEPHALOPATHY)

  • 오미희;김소정;최성철;김광철;박재홍
    • 대한장애인치과학회지
    • /
    • 제8권1호
    • /
    • pp.22-25
    • /
    • 2012
  • 1. 저산소성 허혈성 뇌병변 환아에서 뇌손상으로 인한 혀내밀기 습관에 의해 외상성 혀궤양이 발생할 수 있으며 Riga-Fede disease로 진단할 수 있다. 2. Riga-Fede disease의 종래의 치료 방법은 하악 유전치의 날카로운 부분을 갈아주는 것, 절단면의 복합레진 수복, 발치 등이 있으며 이번 보고에서는 보존적이며 가역적인 방법인 tongue protector를 제안하였고 혀궤양의 치료 및 혀내밀기습관 개선에 효과적인 것으로 나타났다.

Upregulation of HIF-1α by Hypoxia Protect Neuroblastoma Cells from Apoptosis by Promoting Survivin Expression

  • Zhang, Bo;Yin, Cui-Ping;Zhao, Qian;Yue, Shou-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8251-8257
    • /
    • 2014
  • Apoptosis is one of main types of neural cell death and is reversible and is a major target of therapeutic interventions. However, detailed apoptotic cascades still need to be recognized. In present study, we determined the promotion of HIF-$1{\alpha}$ and survivin in brain samples of a mouse model of hypoxic-ischemia and in neuroblastoma SH-SY5Y cells post hypoxia treatment. Then gain-of-function and loss-of-function strategies were adopted to manipulate the HIF-$1{\alpha}$ in SH-SY5Y cells, and hypoxia-induced survivin upregulation and cell apoptosis were determined. Results demonstrated that the HIF-$1{\alpha}$ and survivin were significantly promoted in a mouse model of hypoxic-ischemia or in SH-SY5Y cells post hypoxia in vitro. Manually upregulated HIF-$1{\alpha}$ could promote the hypoxia-induced survivin upregulation and improve the hypoxia-induced SH-SY5Y cell apoptosis. On the other hand, the HIF-$1{\alpha}$ knockdown by RNAi reduced the hypoxia-induced survivin upregulation and cell apoptosis. Therefore, the present study confirmed the protective role of HIF-$1{\alpha}$ and survivin in the hypoxia-induced SH-SY5Y cell apoptosis, and the survivin upregulation by hypoxia is HIF-$1{\alpha}$-dependent. Promotion of HIF-$1{\alpha}$ and survivin might be a valuable stragegy for therapeutic intervention for hypoxic-ischemic encephalopathy.

흰쥐 대뇌피질 절편에서 허혈에 의한 Norepinephrine 유리에 있어서 Nitric Oxide의 영향 (Role of Nitric Oxide in Ischemia-evoked Release of Norepinephrine from Rat Cortex Slices)

  • 은영아;김동찬;조규박;김기원
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.673-679
    • /
    • 1997
  • It has been generally accepted that glutamate mediates the ischemic brain damage, excitotoxicity, and induces release of neurotransmitters, including norepinephrine(NE), in ischemic milieu. In the present study, the role of nitric oxide(NO) in the ischemia-induced $[^3H]norepinephrine([^3H]NE)$ release from cortex slices of the rat was examined. Ischemia, deprivation of oxygen and glucose from $Mg^{2+}-free$ artificial cerebrospinal fluid, induced significant release of $[^3H]NE$ from cortex slices. This ischemia-induced $[^3H]NE$ release was significantly attenuated by glutamatergic neurotransmission modifiers. $N^G-nitro-L-arginine$ methyl ester(L-NAME), $N^G-monomethyl-L-arginine$ (L-NMMA) or 7-nitroindazole, nitric oxide synthase inhibitors attenuated the ischemia-evoked $[^3H]NE$ release. Hemoglobin, a NO chelator, and 5, 5- dimethyl-L-pyrroline-N-oxide(DMPO), an electron spin trap, inhibited $[^3H]NE$ release dose-dependently. Ischemia-evoked $[^3H]NE$ release was inhibited by methylene blue, a soluble guanylate cyclase inhibitor, and potentiated by 8-bromo-cGMP, a cell permeable cGMP analog, zaprinast, a cGMP phosphodiesterase inhibitor, and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide generator. These results suggest that the ischemia-evoked $[^3H]NE$ release is mediated by NMDA receptors, and activation of NO system is involved.

  • PDF

Proteomic Analysis of a Rat Cerebral Ischemic Injury Model after Human Cerebral Endothelial Cell Transplantation

  • Choi, Tae-Min;Yun, Misun;Lee, Jung-Kil;Park, Jong-Tae;Park, Man-Seok;Kim, Hyung-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권6호
    • /
    • pp.544-550
    • /
    • 2016
  • Objective : Cerebral endothelial cells have unique biological features and are fascinating candidate cells for stroke therapy. Methods : In order to understand the molecular mechanisms of human cerebral endothelial cell (hCMEC/D3) transplantation in a rat stroke model, we performed proteomic analysis using 2-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein expression was confirmed by quantitative real-time PCR and Western blot. Results : Several protein spots were identified by gel electrophoresis in the sham, cerebral ischemia (CI), and CI with hCMEC/D3 treatment cerebral ischemia with cell transplantation (CT) groups, and we identified 14 differentially expressed proteins in the CT group. Proteins involved in mitochondrial dysfunction (paraplegin matrix AAA peptidase subunit, SPG7), neuroinflammation (peroxiredoxin 6, PRDX6), and neuronal death (zinc finger protein 90, ZFP90) were markedly reduced in the CT group compared with the CI group. The expression of chloride intracellular channel 4 proteins involved in post-ischemic vasculogenesis was significantly decreased in the CI group but comparable to sham in the CT group. Conclusion : These results contribute to our understanding of the early phase processes that follow cerebral endothelial cell treatment in CI. Moreover, some of the identified proteins may present promising new targets for stroke therapy.