• 제목/요약/키워드: ischemia-reperfusion

검색결과 440건 처리시간 0.034초

The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts

  • Son, Euncheol;Lee, Dongju;Woo, Chul-Woong;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권2호
    • /
    • pp.173-183
    • /
    • 2020
  • An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.

모델 랫드에 간 허혈/재관류로 유발된 손상에 대한 항산화제의 보호 효과에 관한 연구 (A Study on the Protective Effect of Antioxidants on Damage Induced by Liver Ischemia/Repefusion in a Rat Model)

  • 안용호;석푸름;오수진;최진우;신재호
    • 대한임상검사과학회지
    • /
    • 제51권3호
    • /
    • pp.370-378
    • /
    • 2019
  • 허혈 재관류 손상은 기관 이식, 외과적 혈관 재개통 및 출혈시에 발생하며 조직 및 기관 기능 장애를 유발한다. 최근 허혈 재관류 손상의 기전적 연구를 위해 간장 허혈 모델을 많이 이용하고 있다. 본 연구는 허혈 재관류 랫드 모델을 이용하여 항산화와 항염증 효과를 가진 것으로 알려진 Vanillin에 의한 간장 및 신장 손상에 대한 보호 효과를 알아보고 관련된 기전을 조사하기 위하여 실시하였다. 시험물질은 각각 100 mg/kg의 농도로 3일간 투여한 후, 60분동안 간을 결찰하여 허혈 재관류를 유도하여 관찰하였으며, 음성대조군, sham대조군 및 허혈재관류만 실시한 허혈 재관류대조군을 따로 두어, 약물투여군과 비교하였다. Vanillin 처치군에서는 AST, ALT 활성이 허혈 재관류대조군에 비해 유의하게 억제되었고, 조직병리학적 관찰에서도 염증 부분과 괴사부분이 현저하게 감소하였다. MDA와 SOD는 허혈 재관류군에 비해 유의적인 변화를 보였다. 이상의 결과를 종합하면 Vanillin은 간장 허혈 재관류에 의한 세포염증 및 세포괴사를 완화시켜 간세포 보호작용을 나타내었고, 신장의 사구체 및 원위세뇨관에 염증 변화를 완화 시키고 있어 세포 손상을 방어하는 것으로 생각되며, 이러한 방어효과는 항산화 기능에 의한 영향으로 사료된다.

Protective Roles of Ginseng Saponin in Cardiac Ischemia and Reperfusion Injury

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제33권4호
    • /
    • pp.283-293
    • /
    • 2009
  • Ginsenosides, one of the most well-known traditional herbal medicines, are used frequently in Korea for the treatment of cardiovascular symptoms. The effects of ginseng saponin on ischemia-induced isolated rat heart were investigated through analyses of hemodynamic changes including perfusion pressure, aortic flow, coronary flow, and cardiac output. Isolated rat hearts were perfused and then subjected to 30 min of global ischemia followed by 60 min of reperfusion with modified Kreb's Henseleit solution. Myocardial contractile function was continuously recorded. Ginseng saponin administered before inducing ischemia significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output. The ginseng saponin administered group significantly recovered all of the hemodynamic parameters, except heart rate, after ischemia-reperfusion (I/R) compared with ischemia control. The intracellular calcium ($[Ca^{2+}]_i$) content in rat neonatal cardiomyocytes was quantitatively determined. Administration of ginseng saponin significantly prevented $[Ca^{2+}]_i$ increase that had been induced by simulated I/R in vitro (p<0.01) in a dose-dependent manner, suggesting that the cardioprotection of ginseng saponin is mediated by the inhibition of $[Ca^{2+}]_i$ increase. Overall, we found that the administration of ginseng saponin has cardioprotective effects on the isolated rat heart after I/R injury. These results indicate that ginseng saponin has distinct cardioprotective effects in an I/R-induced rat heart.

허혈/재관류 세포 손상에서 청폐사간탕의 보호 효과 (Protective effects of Chungpesagan-tang against ischemia/reperfusion induced cell injury)

  • 홍성길;강봉주;김윤진;강성모;조동욱
    • 한국한의학연구원논문집
    • /
    • 제5권1호
    • /
    • pp.111-117
    • /
    • 1999
  • 세포열을 이용한 허혈/재관류 환경에서 청폐사간탕의 세포보호능을 측정하였다. 청폐사간탕 추출물은 허혈/재관류 환경하에서 발생하는 세포 독성으로부터 대표적 수용성 항산화제인 ascorbic acid보다 높은 세포 보호 활성을 나타내었으며, 산화적 손상의 지표로서 사용되는 지질과산화물(TBARS)를 측정한 결과에서도 ASA와 유사한 활성을 나타내었다. 또한, 허혈/재관류 환경하에서 활성이 증가하여 세포에 산화적 손상을 일으키는 활성 산소종을 유발하는 것으로 알려진 xanthine oxidase 활성 측정에서는 청폐사간탕이 ASA보도 높은 xanthine oxidase 활성 억제능을 보였으며, xanthine oxidase 효소 표품을 이용한 활성 억제능 측정에서도 ASA보다 뛰어난 결과를 보였다. 따라서, 청폐사간탕은 허혈/재관류 환경하에서 세포 보호능이 있는 것으로 추측이되며, 이러한 보호능은 항산화 활성과 더불어서 xanthine oxidase 활성 억제능이 공동 작용의 결과로 사료된다.

  • PDF

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Hot Water Extract of Triticum aestivum L. (Common Wheat) Ameliorates Renal Injury by Inhibiting Apoptosis in a Rat Model of Ischemia/Reperfusion

  • Baek, Hae Sook;Lim, Sun Ha;Ahn, Ki Sung;Lee, Jong Won
    • 대한본초학회지
    • /
    • 제28권3호
    • /
    • pp.7-15
    • /
    • 2013
  • Objectives : Interruption and subsequent restoration of blood flow into the kidney result in renal injury. As an approach to preventing the renal injury, we determined the optimal conditions and the underlying mechanisms by which supernatant of hot water extract of ground Triticum aestivum L. (extract) attenuated ischemia/reperfusion (I/R) injury. Methods : One hour after administration of the extract (400 mg/kg) by intraperitoneal injection, renal I/R injury was generated by clamping the left renal artery in rats after surgical removal of the right kidney, followed by reperfusion. The maximal difference between the vehicle-treated and the extract-treated group under ketamine/xylazine or enflurane anesthetization was assessed at varying periods of ischemia (30-45 min) and reperfusion (3-48 hr), based on the renal function assessed with serum creatinine levels, tissue injury with hematoxylin/eosin staining, and apoptosis with terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling staining. Results : Enflurane anesthetization with 40 min of ischemia and 24 hr of reperfusion was identified to be the optimal condition, under which condition serum creatinine levels and tubular damage in the extract-treated group were significantly reduced compared with those in the vehicle-treated group ($1.3{\pm}0.2$ versus $2.7{\pm}0.3$ mg/dL, P < 0.01, and average score $1.8{\pm}0.1$ versus $3.5{\pm}0.3$, P < 0.01, respectively). These beneficial effects were mediated by inhibition of apoptotic cascades through attenuation of renal tissue malondialdehyde levels, Bax/Bcl-2 ratio and caspase-3 levels. Conclusions : The extract conferred renal protection against ischemia/reperfusion injury in rats by scavenging reactive oxygen species and consequently blocking apoptotic cascades, plausibly augmented by enflurane protection.

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권3호
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.

흰쥐심장의 허혈손상에 대한 Calcium 통로봉쇄제와 Calmodulin 억제제의 예방효과에 대한 연구 (Prevention of Ischemic Damage in Working Rat Hearts by Calcium Channel Blocker and Calmodulin Inhibitors)

  • 성시찬
    • Journal of Chest Surgery
    • /
    • 제22권6호
    • /
    • pp.901-913
    • /
    • 1989
  • This study was investigated under the postulation that activation of intracellular calcium- calmodulin complex during ischemia-reperfusion leads to myocardial injury. The protective effects of calcium channel blocker, diltiazem and calmodulin inhibitors, trifluoperazine, flunarizine and calmidazolium from ischemic injury in rat hearts were observed by using Langendorff apparatus when the antagonists were infused for 3 min in the beginning of ischemia. Thereby, an increase in resting tension developed during 30-min ischemia was analyzed with regard to [1] the degree of cardiac functional recovery following 60-min reperfusion, [2] changes in biochemical variables evoked during 30-min ischemia. The results obtained were as follows: l. In the ischemic group, the resting tension was increased by 4.1*0.2 g at 30-min ischemia. However, the increase in resting tension was markedly reduced not only by pretreatment with diltiazem [3.3 p M] but also with calmodulin inhibitors, trifluoperazine [3.3 p M], flunarizine [0.5 p M] and calmidazolium [0.5 p M], respectively. 2. Recovery of myocardial contractility, +dF /dt and coronary flow were much reduced when evoked by reperfusion in the ischemic group. These variables were significantly improved either by pretreatment with diltiazem or with calmodulin inhibitors. 3. The resting tension increment evoked during ischemia was significantly inversely correlated with the degree of cardiac function recovered during reperfusion. 4. Following 30-min ischemia, the production of malondialdehyde and release of lysosomal enzyme were much increased in association with a decrease in creatine kinase activity. 5. The increases in malondialdehyde production and release of free lysosomal enzyme were suppressed by pretreatment with calmodulin inhibitors as well as diltiazem. Likewise, the decrease of creatine kinase activities was prevented by these calcium antagonists. With these results, it is indicated that a increase in resting tension observed during ischemia has an inverse relationship to the cardiac function recovered following reperfusion, and further, the later may be significantly dependent on the degree of biochemical alterations occurred during ischemia such as decrease in creatine kinase activity, increased production of malondialdehyde and increased release of free lysosomal enzyme. Thus it is concluded that calmodulin plays a pivotal role in the process of ischemic injury.

  • PDF

Effect of Trolox C in the Vasoregulatory Gene Expression during Hepatic Ischemia/Reperfusion

  • Eum, Hyun-Ae;Lee, Sun-Mee
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.193.1-193.1
    • /
    • 2003
  • The present study was done to determine the effect of trolox C. a hydrophilic analogue of vitamin E, on hepatic injury, especially alteration in vasoregulatory gene expression during ischemia and reperfusion. Rats were subjected to 60 min of hepatic ischemia in vivo. Rats were treated intravenously with trolox C (2.5 mg/kg) or vehicle (PBS, pH 7.4), 5 min before reperfusion. (omitted)

  • PDF

Folic acid inhibits necrosis and apoptosis in ischemic and reperfusion induced injury in rat liver

  • Chattopadhyay, Pronobesh;Shukla, Gunjan;Wahi, Arun Kumar
    • Advances in Traditional Medicine
    • /
    • 제9권1호
    • /
    • pp.67-73
    • /
    • 2009
  • Temporary clamping of the portal triad is a common strategy to minimize bleeding during liver transplantation. Increasing evidences suggests that oxygen derived free radicals and reintroduction of oxygen in ischemic tissue lead to ischemic and reperfusion injury (I/R) and lead to apoptosis and necrosis. Adult Wistar rat subjected to 60 min of partial liver ischemia followed by three hour reperfusion. Eighteen Wister rats were divided into sham-operated control group (I) (n = 6), ischemia and reperfusion group (II) (n = 6), folic acid treated group (1 mg/kg body weight/daily by oral route for 7 days before induced ischemia reperfusion maneuver) (III) (n = 6). Apoptotic and necrotic hepatocytes, mitochondrial antioxidant enzymes were measured. Liver injury was assessed by alanine transaminases (ALT), aspartate transaminases (AST), liver histopathology and electron microscopy. An ischemic and reperfusion hepatocellular injury was indicated by increased serum-ALT, AST, histopathology and electron microscopy studies. Apoptotic and necrotic cells were increased which was revealed by flow cytometry in I/R group. Pre- treatment with folic acid significantly decreased serum -ALT, AST levels, apoptotic and necrotic cells after 1 h ischemia followed by 3 h of reperfusion. Histopathology and TEM studies showed markedly diminished hepatocellular injury in folic acid pretreated rats during the hepatic I/R, which reached a level comparable to saline-treated rat of sham operated group. On the basis of our findings it may be concluded that folic acid afforded significant protection from necrosis and apoptosis in I/R injury.