• Title/Summary/Keyword: ischaemia

Search Result 6, Processing Time 0.015 seconds

Effect of Neurosteroid Modulation on Global Ischaemia-Reperfusion-Induced Cerebral Injury in Mice

  • Grewal, Amarjot Kaur;Jaggi, Amteshwar Singh;Rana, Avtar Chand;Singh, Nirmal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.485-491
    • /
    • 2013
  • The present study was designed to investigate the putative effect of neurosteroid modulation on global ischaemia-reperfusion-induced cerebral injury in mice. Bilateral carotid artery occlusion followed by reperfusion, produced a significant rise in cerebral infarct size along with impairment of grip strength and motor coordination in Swiss albino mice. Administration of carbamazepine (16 mg/kg, i.p.) before global cerebral ischaemia significantly attenuated cerebral infarct size and improved the motor performance. However, administration of indomethacin (100 mg/kg, i.p.) attenuated the neuroprotective effect of carbamazepine. Mexiletine (50 mg/kg, i.p.) did not produce significant neuroprotective effect. It may be concluded that the neuroprotective effect of carbamazepine may be due to increase in synthesis of neurosteroids perhaps by activating enzyme ($3{\alpha}$ HSD) as indomethacin attenuated the neuroprotective effect of carbamazepine. The sodium channel blocking effect of carbamazepine may not be involved in neuroprotection as mexiletine, a sodium channel blocker, did not produce significant neuroprotective effect.

MicroRNA-206 Protects against Myocardial Ischaemia-Reperfusion Injury in Rats by Targeting Gadd45β

  • Zhai, Changlin;Qian, Qang;Tang, Guanmin;Han, Bingjiang;Hu, Huilin;Yin, Dong;Pan, Haihua;Zhang, Song
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.916-924
    • /
    • 2017
  • MicroRNAs are widely involved in the pathogenesis of cardiovascular diseases through regulating gene expression via translational inhibition or degradation of their target mRNAs. Recent studies have indicated a critical role of microRNA-206 in myocardial ischaemia-reperfusion (I/R) injury. However, the function of miR-206 in myocardial I/R injury is currently unclear. The present study was aimed to identify the specific role of miR-206 in myocardial I/R injury and explore the underlying molecular mechanism. Our results revealed that the expression level of miR-206 was significantly decreased both in rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation (H/R) compared with the corresponding control. Overexpression of miR-206 observably decreased infarct size and inhibited the cardiomyocyte apoptosis induced by I/R injury. Furthermore, bioinformatics analysis, luciferase activity and western blot assay proved that $Gadd45{\beta}$ (growth arrest DNA damage-inducible gene $45{\beta}$) was a direct target gene of miR-206. In addition, the expression of pro-apoptotic-related genes, such as p53, Bax and cleaved caspase3, was decreased in association with the down-regulation of $Gadd45{\beta}$. In summary, this study demonstrates that miR-206 could protect against myocardial I/R injury by targeting $Gadd45{\beta}$.

Changes in Poly ADP Ribose Polymerase Immune Response Cells of Cerebral Ischaemia Induced Rat by Transcranial Magnetic Stimulation of Alternating Current Approach

  • Koo, Hyun-Mo;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.357-364
    • /
    • 2014
  • This study examined effect of a transcranial magnetic stimulation device with a commercial-frequency approach on the neuronal cell death caused ischemia. For a simple transcranial magnetic stimulation device, the experiment was conducted on an ischemia induced rat by transcranial magnetic stimulation of a commercial-frequency approach, controlling the firing angle using a Triac power device. The transcranial magnetic stimulation device was controlled at a voltage of 220 V 60 Hz and the trigger of the Triac gate was varied from $45^{\circ}$ up to $135^{\circ}$. Cerebral ischemia was caused by ligating the common carotid artery of male SD rats and reperfusion was performed again to blood after 5 minutes. Protein Expression was examined by Western blotting and the immune response cells reacting to the antibodies of Poly ADP ribose polymerase in the cerebral nerve cells. As a result, for the immune response cells of Poly ADP ribose polymerase related to necrosis, the transcranial magnetic stimulation device suppressed necrosis and had a protective effect on nerve cells. The effect was greatest within 12 hours after ischemia. Therefore, it is believed that in the case of brain damage caused by ischemia, the function of brain cells can be restored and the impairment can be improved by the application of transcranial magnetic stimulation.

Non-surgical treatment of hemorrhagic shock caused by rupture of iatrogenic pseudoaneurysm (의인성 가성낭종 파열에 의한 출혈성 쇽의 비수술적 치료)

  • Kim, Soon Young;Kim, Tae Jun;Na, Seong Kyun;Park, Seung Ah;Jung, Dong Min;Kim, Yong Kyun;Jo, Sang-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.1
    • /
    • pp.17-20
    • /
    • 2014
  • Iatrogenic femoral artery pseudoaneurysm is a complication in patients undergoing catheterization. The risk increased when large-bore sheaths, concomitant anticoagulation therapy, and antiplatelet therapy are used during the intervention. Ultrasound-guided thrombin injection has become the treatment of choice. Rapid expansion, rupture, infection, and mass effect resulting in distal or cutaneous ischaemia or peripheral neuropathy, as well as failure of other treatment options are all indications for surgery. We report a 48-year-old man who developed hemorrhagic shock due to femoral pseudoaneurysm rupture after coronary angiography, and successfully treated by ultrasound-guided thrombin injection.

Effects of in vitro immune stimulation by ginsenoside Rb1

  • Kim, Ji-Young;Han, Eun-Hee;Jeong, Hye-Gwang
    • Proceedings of the Ginseng society Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • Red ginseng is a classical traditional Chinese medicine. Among Chinese herbs, red ginseng has been considered as one of the tonics. Many studies indicated that red ginseng could enhance immune function of the human body. Red ginseng total saponin, ginsenoside, the most important active constituents identified in red ginseng can protect against myocardial ischaemia damage and protect endothelium against electrolysis-induced free radical injury. Macrophages play a significant role in host defense mechanisms. When activated, they inhibit the growth of a wide variety of tumor cells. The aim of this study was to determine the effects of pure ginsenoside Rb1 on immunostimulatory activity such as murine macrophage phagocytosis and proliferation of splenocytes. Furthermore, we investigated the effects of ginsenoside Rb1 on the production of nitric oxide (NO), reactive oxygen species (ROS) and proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha) in murine macrophage, RAW 264.7 cells. ROS have emerged as important signaling molecules in the regulation of various cellular processes. Ginsenoside Rb1 significantly increased production of ROS in dose dependent manner. As NO plays an important role in immune function, ginsenoside Rb1 treatment could modulate several aspects of host defense mechanisms due to stimulation. Treatment with ginsenoside Rb1 to macrophages induced the production of NO and proinflammatory cytokines and expression levels of these genes in a dose-dependent manner. Furthermore, incubation of RAW 264.7 cells with ginsenoside Rb1 showed a dose dependent increased phagocytosis activity and lymphocyte proliferation of splenocytes. Therefore, these results suggest that ginsenoside Rb1 has promising potential as a natural medicine for stimulation of the immune system.

  • PDF

Safety of Stress Cardiac Magnetic Resonance in Patients With Moderate to Severe Aortic Valve Stenosis

  • Janek Salatzki;Andreas Ochs;Nadja Kirchgassner;Jannick Heins;Sebastian Seitz;Hauke Hund;Derliz Mereles;Matthias G. Friedrich;Hugo A. Katus;Norbert Frey;Florian Andre;Marco M. Ochs
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.1
    • /
    • pp.26-38
    • /
    • 2023
  • BACKGROUND: Dobutamine and adenosine stress cardiac magnetic resonance (CMR) imaging is relatively contraindicated in patients with moderate to severe aortic valve stenosis (AS). We aimed to determine the safety of dobutamine and adenosine stress CMR in patients with moderate to severe AS. METHODS: In this retrospective study patients with AS who underwent either dobutamine or adenosine stress CMR for exclusion of obstructive coronary artery disease were enrolled. We recorded clinical data, CMR and echocardiography findings, and complications as well as minor symptoms. Patients with AS were compared to matched individuals without AS. RESULTS: A total of 187 patients with AS were identified and compared to age-, gender- and body mass index-matched 187 patients without AS. No severe complications were reported in the study nor the control group. The reported frequency of non-severe complications and minor symptoms were similar between the study and the control groups. Nineteen patients with AS experienced non-severe complications or minor symptoms during dobutamine stress CMR compared to eighteen patients without AS (p = 0.855). One patient with AS and two patients without AS undergoing adenosine stress CMR experienced minor symptoms (p = 0.562). Four examinations were aborted because of chest pain, paroxysmal atrial fibrillation and third-degree atrioventricular block. Inducible ischaemia, prior coronary artery bypass grafting, prior stroke and age were associated with a higher incidence of complications and minor symptoms. CONCLUSIONS: Moderate to severe AS was not associated with complications during CMR stress test. The incidence of non-severe complications and minor symptoms was greater with dobutamine.