• Title/Summary/Keyword: is

Search Result 717,252, Processing Time 0.592 seconds

Kinetics and mechanism of chromate reduction by biotite and pyrite (흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작)

  • 전철민;김재곤;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2003
  • The removal of chromate from aqueous solution using finely ground pyrite and biotite was investigated by batch experiments and the kinetics and the mechanism of chromate reduction were discussed. The chromate reduction by pyrite was about hundred times faster than that by biotite and was also faster at pH 3 than at pH 4. When pyrite was used, more than 90% of initial chromate was reduced within four hours at pH 4 and within 40 min. at pH 3. However, more than 400 hours was taken for the reduction of 90% of initial chromate by biotite. The results indicate that the rate of chromate reduction was strongly depending on the amount of Fe(II) in the minerals and on the dissolution rate of Fe(II) from the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH))$_3$$_{ (s)}$, which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than expected values. When biotite was used, amounts of decreased Fe(II) and reduced Cr(Ⅵ) did not show stoichiometric relationship, which implying there was not only chromate reduction by ferrous ions in the acidic solution but also heterogeneous reduction of ferric ions by the structural ferrous iron in biotite. However, the results from a series of the experiments using Pyrite showed that concentrations of the decreased Fe(II) and the reduced Cr(Ⅵ) were close to the stoichiometric ratio of 3:1. It was because the oxidation of pyrite rapidly created ferrous ions even in oxygenated solutions and the chromate reduction by the ferrous ions was significantly faster than ferrous ion oxygenation.

An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea (한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의)

  • Ryu In-Chang;Choi Seon-Gyu;Wee Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.129-149
    • /
    • 2006
  • Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-riftins stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia turing the Cretaceous.

Characterization of Mineralogical Changes of Chrysotile and its Thermal Decomposition by Heat Treatment (열처리에 따른 백석면의 광물학적 특성 변화와 열분해 과정 연구)

  • Jeong, Hyeonyi;Moon, Wonjin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • Chrysotile is a 1:1 sheet silicate mineral belonging to serpentine group. It has been highlighted studies because of uses, shapes and structural characteristics of the fibrous chrysotile. However, it was designated as Class 1 carcinogen, so high attentions were being placed on detoxification studies of chrysotile. The objectives of this study were to investigate changes of mineralogical characteristics of chrysotile and to suggest detoxification mechanism of chrysotile by thermal decomposition. Samples for this study were obtained from LAB Chrysotile mine in Canada. The samples were heated in air in the range of 600 to $1,300^{\circ}C$. Changes of mineralogical characteristics such as crystal structure, shape, and chemical composition of the chrysotile fibers were examined by TG-DTA, XRD, FT-IR, TEM-EDS and SEM-EDS analyses. As a result of thermal decomposition, the fibrous chrysotile having hollow tube structure was dehydroxylated at $600-650^{\circ}C$ and transformed to disordered chrysotile by removal of OH at the octahedral sheet (MgOH) (Dehydroxylation 1). Upon increasing temperature, it was transformed to forsterite ($Mg_2SiO_4$) at $820^{\circ}C$ by rearrangement of Mg, Si and O (Dehydroxylation 2). In addition, crystal structure of forsterite had begun to transform at $800^{\circ}C$, and gradually grown 3-dimensionally to enstatite ($MgSiO_3$) by recrystallization after the heating above $1,100^{\circ}C$. And then finally transformed to spherical minerals. This study showed chrysotile structure was collapsed about $600-700^{\circ}C$ by dehydroxylation. And then the fibrous chrysotile was transformed to forsterite and enstatite, as non-hazardous minerals. Therefore, this study indicates heat treatment can be used to detoxification of chrysotile.

Comparison of Soil Washing for Heavy Metal Contaminated Shooting Range Using Various Extracts (다양한 추출용매를 이용한 중금속 오염 사격장 토양세척 비교)

  • Lee, Jun-Ho;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.123-136
    • /
    • 2010
  • In order to remediate heavy metal contaminated Nong island, Maehyang-ri shooting range soils through the batch reactor scale washing were evaluated. The experiment texture soil of N3 in the Nong island at north side incline was (g)mS containing 12.9% gravel, 47.0% sand, 35.1% silt and 5.0% clay. And the N3 soil area was contaminated with Cd($22.5\pm1.9$ ppm), Cu($35.5\pm4.0$ ppm), Pb($1,279.0\pm5.1$ ppm) and Zn($403.4\pm9.8$ ppm). The EDTA(ethylene diamine tetra acetic acid, $C_{10}H_{16}N_2O_8$) in the N3 soil was observed as most effective extractants among the 5 extractants(citric acid, EDTA, phosphoric acid, potassium phosphate and oxalic acid) tested. And chemical partitioning of heavy metals after washing N3 soil with EDTA was evaluated. Removal efficiency of residual fractions was higher than that of non-residual fractions. To choose EDTA extractant which is the most effective in soil washing technology using batch reactor process cleaning Pb and Zn contaminated sits; Pb and Zn removal rates were investigated 92.4%, 94.0% removal(1,000 mM, soil:solution=5, $20^{\circ}C$, 24 hour shaking, pH=2, 200 RPM), respectively. The results of the batch test showed that the removal efficiency curve was logarithmic in soil was removal. Thus, EDTA washing process can be applied to remediate the Pb and Zn contaminated soil used in this study.

Geochemical Reactive Experimental and Modeling Studies on Caprock in the Pohang Basin (포항분지 덮개암에 대한 지화학적 반응 실험 및 모델링 연구)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.371-380
    • /
    • 2016
  • This study aims to identify the mineraloical and petrographical characteristics of caprock from drilling cores of Pohang basin as a potential $CO_2$ storage site. Experiments and modeling were conducted in order to investigate the geochemical and mineralogical caprock effects of carbon dioxide. A series of autoclave experiments were conducted to simulate the interaction in the $scCO_2$-caprock-brine using a high pressure and temperature cell at $50^{\circ}C$ and 100 bar. Geochemical and mineralogical alterations after 15 days of $scCO_2$-caprock-brine sample reactions were quantitatively examined by XRD, XRF, ICP-OES investigation. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of brine were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 11.0.4 geochemical simulator. Results from XRD analysis for caprock sample showed that major compositional minerals are quartz, plagioclase, and K-feldspar, and muscovite, pyrite, siderite, calcite, kaolinite and montnorillonite were included on a small scale. Results from ICP-OES analysis for brine showed that concentration of $Ca^{2+}$, $Na^+$, $K^+$ and $Mg^{2+}$ increased due to dissolution of plagioclase, K-feldspar and muscovite. Results of modeling for the period of 100 years showed that the recrystallization of kaolinite, dawsonite and beidellite, at the expense of plagioclase and K-feldspar is characteristic. Volumes of newly precipitation minerals and minerals passing into brine were balanced, so the porosity remained nearly unchanged. Experimental and modeling results indicate the interaction between caprock and $scCO_2$ during geologic carbon sequestration can exert significant impacts in brine pH and solubility/stability of minerals.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.

[ 137Cs] and 40K Activities of Foodstuffs Consumed in Jeju (제주지역에서 소비되는 식품 중 137Cs과 40K 방사능 농도)

  • Kang, Tae-Woo;Hong, Kyung-Ae;Park, Won-Pyo;U., Zang-Kual
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • This work was conducted to provide the reference data of radioactivity in the foodstuffs at a radiological emergency situation in Jeju Island The sampled foodstuffs were agricultural (31), livestock (6), marine (12) and forest products (4), and processed foods (3) consumed by Jeju Islanders. $^{137}Cs$ and $^{40}K$ activities were determined by HPGe r-ray spectromety. The activity ranges of $^{137}Cs$ was ${\sim}650\;mBq/kg$ fresh in the agricultural products, ${\sim}131\;mBq/kg$. fresh in the livestock, ${\sim}834\;mBq/kg$ fresh in the forest, ${\sim}253\;mBq/kg$ fresh in the marine and $32.0{\sim}483\;mBq/kg$. fresh in the processed foods (tea). In case of $^{40}K$ the activity was $16.6{\sim}542\;Bq/kg$. fresh in the agricultural products, $39.1{\sim}294\;Bq/kg$ fresh in the livestock, $85.5{\sim}116\;Bq/kg$ fresh in the forest, $50.1{\sim}657\;Bq/kg$ fresh in the marine, and $33.6{\sim}1,065\;Bq/kg$ fresh in the processed foods (tea). The highest activity of $^{137}Cs$, 834mBq/kg fresh was observed in oak mushroom and $^{40}K$ 1,065 Bq/kg fresh in coffee. Annual effective doses of $^{137}Cs$ and $^{40}K$ by intake of foodstuffs per capita were the following order; agricultural products (66,543 nSv) > livestock products (19,311 nSv) > processed foods (6,648 nSv) > marine products (6,579 nSv) > forest products (860 nSv). Therefore, total annual effective dose was summed 99,941 nSv which is quite low level comparing to the annual effective dose by external exposure, 2,400,000 nSv. The data obtained in this study can be useful for monitoring whether the foodstuffs are contaminated or not at an emergency radiation accident, and showed that the foodstuffs consumed in Jeju are safe in terms of annual effective dose of $^{137}Cs$ and $^{40}K$

Effects of Expeller Cake Fertilizer on Soil Properties and Tah Tasai Chinese Cabbage Yield in Organic Greenhouse Farm (유기농 시설하우스 토양에서 유박 시용이 토양특성 및 다채 생육에 미치는 영향)

  • Kim, Kab-Cheol;Ahn, Byung-Koo;Ko, Do-Young;Kim, Ju;Jeong, Seong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.149-154
    • /
    • 2014
  • BACKGROUND: To evaluate the application level of expeller cake fertilizer(ECF), we have investigated soil chemical properties, leaf mineral contents and yield of tah tasai Chinese cabbage in a plastic film greenhouse. METHODS AND RESULTS: Five levels of fertilizer were applied as 0%(ECF 0), 50%(ECF 50), 75%(ECF 75), 100% (ECF 100) and 150%(ECF 150) by base 1,848 kg/ha of ECF. In 2012, tah tasai Chinese cabbage was planted on April 28 in a silt loam soil and harvested on July 12. Commercial yields were measured 10 times from May 10 to July 12. Electrical conductivity (2.24~3.09 dS/m), available $P_2O_5$(484~581 mg/kg) and exchangeable cations($K^+$, $Ca^{2+}$ and $Mg^{2+}$) were tended to increase by the application of ECF. However, the range of those was not significant. The contents of T-N, K, Ca and P of tah tasai Chinese cabbage leaves were 62.2~66.5 g/kg, 44.3~48.7 g/kg, 5.1~5.9 g/kg and 5.6~6.2 g/kg, respectively. The nitrogen utilization rate of tah tasai Chinese cabbage was 39.4~51.6%, and it was decreased with increased application amount of ECF. The yield of tah tasai Chinese cabbage was 9,806 to 12,730 kg/ha on the basis of application amount of ECF and it was not increased in spite of increased ECF. CONCLUSION: The optimum dose of application of ECF for cultivation of tah tasai Chinese cabbage was ranged from 924 kg/ha(as ECF 50) to 1,386 kg/ha(as ECF 75). Environment-friendly and economical amount of applied fertilizer is more important than yield for cultivation of tah tasai Chinese cabbage.

Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard (포도 과수원에서 살균제 Difenoconazole의 농작업자 노출량 측정)

  • Cho, ll Kyu;Park, Joon Seong;Park, So Hyun;Kim, Su Jin;Kim, Back Jong;Na, Tae Wong;Nam, Hyo Song;Park, Kyung Hun;Lee, Jiho;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.286-293
    • /
    • 2016
  • BACKGROUND: 18% of difenoconazole+iminoctadin triacetate microemulsion (3%+15%) formulation were mixed and sprayed as closely as possible to normal practice on the ten of farms located in the Youngju of South Korea. Patches, cotton gloves, socks, masks and XAD-2 resin were used to measure the potential exposure for applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to difenoconazole during preparation of spray suspension and application with a power sprayer on a grape orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump IOM sampler and cassette and glass fiber filter were used for inhalation exposure. The field studies were carried out in a grape orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 97.3% and 119.6% in the level of 100 LOQ (limit of quantification) while the LOQ for difenoconazole was $0.025{\mu}g/mL$ using HPLC-UVD. The arms exposure to difenoconazole for the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, legs). The exposure to difenoconazole in the legs for applicator (3.78 mg) was highest in the parts of body. The dermal exposure for mixer/loader and applicator were 0.02 and 2.28 mg on a grape orchard, respectively. The inhalation exposure during application was estimated as 0.02 mg. The ratio of inhalation exposure to dermal exposure was equivalent to 0.9% of the dermal exposure. CONCLUSION: The inhalation exposure for applicator indicated $18.8{\times}10^{-3}mg$, which was level of 0.9% of the dermal exposure (2.28 mg). Operator exposure (0.004 mg/kg bw/day) to difenoconazole during treatment for grape is calculated as 2.5% of the established AOEL (0.16 mg/kg bw/day).