• 제목/요약/키워드: irrigation water supply capacity

검색결과 56건 처리시간 0.026초

순환형 농업용수관리를 위한 농업용 저수지의 비관개기 양수저류 추정 (Water Balance Analysis of Pumped-Storage Reservoir during Non-Irrigation Period for Recurrent Irrigation Water Management)

  • 방나경;남원호;신지현;김한중;강구;백승출;이광야
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.1-12
    • /
    • 2020
  • The extreme 2017 spring drought affected a large portion of South Korea in the Southern Gyeonggi-do and Chungcheongnam-do districts. This drought event was one of the climatologically driest spring seasons over the 1961-2016 period of record. It was characterized by exceptionally low reservoir water levels, with the average water level being 36% lower over most of western South Korea. In this study, we consider drought response methods to alleviate the shortage of agricultural water in times of drought. It could be to store water from a stream into a reservoir. There is a cyclical method for reusing water supplied from a reservoir into streams through drainage. We intended to present a decision-making plan for water supply based on the calculation of the quantity of water supply and leakage. We compared the rainfall-runoff equation with the TANK model, which is a long-term run-off model. Estimations of reservoir inflow during non-irrigation seasons applied to the Madun, Daesa, and Pungjeon reservoirs. We applied the run-off flow to the last 30 years of rainfall data to estimate reservoir storage. We calculated the available water in the river during the non-irrigation season. The daily average inflow from 2003 to 2018 was calculated from October to April. Simulation results show that an average of 67,000 tons of water is obtained during the non-irrigation season. The report shows that about 53,000 tons of water are available except during the winter season from December to February. The Madun Reservoir began in early October with a 10 percent storage rate. In the starting ratio, a simulated rate of 4 K, 6 K, and 8 K tons is predicted to be 44%, 50%, and 60%. We can estimate the amount of water needed and the timing of water pump operations during the non-irrigation season that focuses on fresh water reservoirs and improve decision making for efficient water supplies.

관정연계이용 기술 적용을 위한 상습가뭄지역 지하수 수요-공급량 평가 (Estimation on an Amount of the Groundwater Demand and Supply for Applying the Well-network System (WNS) to a Frequent-drought Area)

  • 이병선;정찬덕;이규상;하규철;이종화;송성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권2호
    • /
    • pp.24-35
    • /
    • 2022
  • This study was conducted to estimate groundwater demand and supply for agricultural activities in a frequent-drought area that requires implementation of optimal distribution plan utilizing the well-network system (WNS). The WNS has been considered as a viable strategic way of supplying groundwater to farmlands by connecting groundwater wells physically or virtually. The study area heavily relied on groundwater resources for irrigation up to 53% due to a lack of surface water resources. Two kinds of methods, HOMWRS software and FAO approach, were used for estimating irrigation water requirements for paddy and upland fields, respectively. During the latest 10 years (2010~2019), the water requirements was estimated to be 1,106 m3/day. The requirements notably increased to 1,121~4,004 m3/day during active farming season (May to September), which exceeded the total yield capacity of pre-existing groundwater wells (2,356 m3/day) in the area. Detailed and definite determination for groundwater demand and supply helped to determine optimal scale parameters of WNS. The WNS has achieved more balanced distribution of groundwater resources for irrigation over the study area.

농업용수 수요량 예측기법 고찰 (Consideration of Techniques for Agricultural Water Demands Estimation)

  • 박재홍;이용직
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.37-40
    • /
    • 2002
  • It is to show the problems of the existing techniques to estimate agricultural water demand and to suggest the new methods considering the water demand for non-irrigated area and decrease of water loss in canal. It is to suggest the methods to improve the techniques for estimating agricultural water demand and to analyze the water demand and supply according to the facilities capacity. Until now, the concept of per the unit used to estimate agriculture water demand is useful to estimate demand, but is insufficient to cope with the variations of conditions in future. And the paddy area of government is not realistic against a trend of decrease. Water demand decrease is caused by constructions of irrigation facilities as constructing of irrigation canal, but application loss ratio is fixed. Increase of the water demand owing to the increase of the yield per the unit area is also the actual condition which is not considered. The guide-line must contain these contents for a demand estimate.

  • PDF

소규모 댐의 저수관리 시스템 개발 (Development of Storage Management System for Small Dams)

  • 김필식;김선주
    • 한국농공학회논문집
    • /
    • 제47권3호
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

Evaluation of impact of climate variability on water resources and yield capacity of selected reservoirs in the north central Nigeria

  • Salami, Adebayo Wahab;Ibrahim, Habibat;Sojobi, Adebayo Olatunbosun
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.290-297
    • /
    • 2015
  • This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.

한국댐의 대용량 배수시설 및 Spillway 배수능력에 관한 조사연구 (A Study on Drainage Capability of Large Capacity Outlet and Spillway of Dams in Korea)

  • 이원환
    • 물과 미래
    • /
    • 제11권2호
    • /
    • pp.43-53
    • /
    • 1978
  • 본 연구는 국내 대댐(ICOLD규정에 의한 대댐) 647개를 대상으로 건설실적과 분류를 통하여 체계화하였으며 특히 대용량 배수설비 및 여수토의 배수능력을 진단함으로써 앞으로의 대용량 배수설비 계획방침을 제안한 것이다. 본 연구를 통하여 얻어진 성과를 요약하면 아래와 같다. 1. 국내댐의 용도별 분류로 보면 94%가 관개용댐(647개중 607개)이며 발전용댐이 2%(14개) 생활 및 공업용수댐이 26개로 4%이다. 2. 계획방류량 설정에서 관개용 댐의 spillway에서는 100년 확률홍수량을 택하고 있으며 생활 및 공업용수댐의 spillway는 200년, 발전용댐에서는 500년 또는 1,000년을 택하고 있으나 소규모 Spillway에서는 500년 이상을, 대규모 Spillway에서는 1000년 이상 또는 PMF를 택해야 할 것이다. 3. Spillway는 방재공학적 견지에서 반드시 고려되어야 하겠으며 그 기획규모를 확률년도 등급(안)을 제안하였다. 4. 몇가지 문제점을 제기하여, 앞으로의 과제로 하였다.

  • PDF

농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰 (A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir)

  • 정지연;정민혁;범진아;박민경;이재남;유승환;윤광식
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

A study on the vulnerability of field water supply using public groundwater wells as irrigation in drought-vulnerable areas with a focus on the Dangjin-si, Yesan-gun, Cheongyang-gun, and Goesan-gun regions in South Korea

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Hwang, Seon-Ah;Nam, Won-Ho;Park, Chan Gi
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.103-117
    • /
    • 2021
  • The severe effects of climate change, such as global warming and the El Niño phenomenon, have become more prevalent. In recent years, natural disasters such as drought, heavy rain, and typhoons have taken place, resulting in noticeable damage. Korea is affected by droughts that cause damage to rice fields and crops. Societal interest in droughts is growing, and measures are urgently needed to address their impacts. As the demand for high-quality agricultural products expands, farmers have become more interested in water management, and the demand for field irrigation is increasing. Therefore, we investigated water demand in the irrigation of drought-vulnerable crops. Specifically, we determined the water requirements for crops including cabbage, red pepper, apple, and bean in four regions by calculating the consumptive water use (evapotranspiration), effective rainfall, and irrigation capacity. The total consumptive water use (crop evapotranspiration) estimates for Dangjin-si (cabbage), Yesan-gun (apple), Cheongyang-gun (pepper) in Chungnam, and Goesan-gun (bean) in Chungbuk were 33.5, 206.4, 86.1, and 204.5 mm, respectively. The volumes of groundwater available in the four regions were determined to be the following: Dangjin-si, 4,968,000 m3; Yesan-gun, 4,300,000 m3; Cheongyang-gun, 1,114,000 m3, and Goesan-gun, 3,794,000 m3. The annual amounts available for the representative crops, compared to the amount of evapotranspiration, were 313.9% in Dangjin-si, 29.5% in Yesan-gun, 56.1% in Cheongyang-gun, and 20.1% in Goesan-gun.

저수지 내용적 감소가 필요저수량에 미치는 영향에 관한 연구 (A study of the relationship between Sedimentation and Storage requirments of reservoirs)

  • 신일선;김재곤;김시원
    • 한국농공학회지
    • /
    • 제21권1호
    • /
    • pp.53-62
    • /
    • 1979
  • Since the first installation of irrigation Systems in Korea , a large number of small and medium sized reservoirs have been constructed as the main water sources Some 412, 000 ha are at present irrigated from these sources of supply. Many of the reservoirs were designed in accordance with old low standards and have in addition suffered a loss in capacity through sedimentation. At the same time, water demand has increased with the in troduction of high yielding varieties of rice. The combination has resulted in severe water deficits. To study the problem, 16 sample reservoirs have been surveyed and analysed. The results of the study are summarized be low: 1. Average decrease in reservoir capacity from the installation to present-8% 2. Average soil erosion loss (m$^3$/km$^2$/year) is 536 m$^3$/km$^2$/year and average erosion depth of soil is 0. 5mm per year. 3. No relationship, between reservoir capacity per unit of watershed (m$^3$/km$^2$) and soil erosion loss was found. 4. Increases are required in reservoir capacity: 15.8% due to the introduction of HYV's; 16.6% due to the change of system losses from 10%to 25% The conclusion to be drawn from the above results is that existing reservoir capacity should be increased by an average of 32%. The unit storage capacity to be adopted should be 661 mm

  • PDF

경제성 지표를 활용한 농업용저수지의 생활용수 공급가능성 평가 (Assessment of domestic water supply potential of agricultural reservoirs in rural area considering economic index)

  • 윤광식;최수명;채종훈;유승환;최동호;윤석군;이창희;정경훈;신길채
    • 농촌계획
    • /
    • 제23권1호
    • /
    • pp.85-96
    • /
    • 2017
  • Existing agricultural reservoirs are considered as alternative source for the water welfare of rural area. In this study, domestic water supply potential of 476 reservoirs, which has storage capacity more than one million cubic meter, out of 3,377 agricultural reservoirs managed by Korean Rural Community Corporation (KRC) were investigated. Among them water quality of 136 reservoirs met the criteria of domestic water source which show less than COD 3 ppm. Available amount for domestic water of reservoirs, which meet the water quality, for ten year return period of drought was analyzed with reservoir water balance model. The results showed that 116 reservoirs has potential for supplementary domestic water supply while satisfying irrigation water supply. Finally, economic analysis using Net Present Value (NPV), Benefit-Cost (B/C) ratio, Internal Rate of Return (IRR), and Profitability Index (PI) methods was also conducted. The analysis showed that 19 reservoirs satisfied economic feasibility when water is provided from reservoir outlet but only 9 reservoirs meet the economic feasibility if water delivered from a reservoir to treatment plant by newly built conveyance canal. In order to supply the domestic water through the agricultural reservoirs managed by KRC, it is necessary to flexibly interpret and operate the 'Rearrangement of Agricultural and Fishing village Act'. Also, it is reasonable to participate in the water service business when there is a supply request from other Ministries. In addition, the KRC requires further effort to change the crop system for saving water and improve efficiency of irrigation systems.