• Title/Summary/Keyword: irrigation management

Search Result 637, Processing Time 0.067 seconds

Improvement of Water and Fertilizer Use Efficiency by Daily Last Irrigation Time for Tomato Perlite Bag Culture (토마토 펄라이트 자루재배에서의 관수마감시각에 따른 용수이용효율 및 비료이용효율 증진)

  • Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.408-412
    • /
    • 2009
  • Daily last time of irrigation in perlite bag culture was investigated to get high water use efficiency (WUE) and fertilizer use efficiency (FUE) and also sustain high productivity for tomato. The water content in the substrate was higher as the last time of irrigation was later from 4 to 1hour before sunset. The growth were not significantly different in all treatments. The marketable yield was the highest in treatments of 1 or 2hours before sunset and the lowest in treatment of 4hours. In the result to investigate for 128days WUE and FUE were the lowest in treatment of 1hour before sunset but the highest in treatment of 3hours before sunset. In the conclusion, it looks best to end irrigation 2~3hours before sunset in the aspects of plant growth, yield, WUE, and FUE.

Application Time of Irrigation Management by Drainage Level Sensor in Tomato Perlite Bag Culture (토마토 펄라이트 자루재배시 배액전극제어법 적용시점 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The experiment was implemented to introduce the drainage electrode irrigation system as early as possible after transplanting in order to save the nutrient solution in a convenient way. Drainage electrode irrigation method was introduced 15, 19 or 22 days after transplanting after irrigation was firstly controlled by time clock. Time clock method was also treated as a control plot. Drainage electrode method could be adopted from 15 days after transplanting, 15 days earlier than the present introducing time. The growth and yield was better in treatments with drainage electrode method. Water and fertilizer use efficiency were the highest in the treatment of 15 days, the lowest in time clock treatment.

Growth and Yield Responses of Corn (Zea mays L.) as Affected by Growth Period and Irrigation Intensity

  • Nam, Hyo-Hoon;Seo, Myung-Chul;Cho, Hyun-Suk;Lee, Yun-Ho;Seo, Young-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.674-683
    • /
    • 2017
  • The frequency and intensity of soil moisture stress associated with climate change has increasing, and the stability of field crop cultivation has decreasing. This experiment was conducted to investigate the effect of soil moisture management method on growth and yield of corn. Soil moisture was managed at the grade of WSM (wet soil moisture, 34.0~42.9%), OSM (optimum soil moisture, 27.8~34.0%), DSM (dry soil moisture, 20.3~27.8%), and ESM (extreme dry moisture, 16.6~20.3%) during V8 (8th leaf stage)-VT (tasseling stage). After VT, irrigation was limited. The treated amount of irrigation was 54.1, 47.7, 44.0 and 34.5% of total water requirement, respectively. The potential evapotranspiration during the growing period was $3.29mm\;day^{-1}$, and upward movement of soil water was estimated by the AFKAE 0.5 model in the order of ESM, DSM, OSM, and WSM. We could confirm this phenomenon from actual observations. There was no significant difference in leaf characteristics, dry matter, and primary productivity depending on the level of soil moisture, but leaf development was delayed and dry weight decreased in DSM. However, dry weight and individual productivity of DSM increased after irrigation withdrawal compared to that of OSM. In DSM, ear yield and number of kernels per ear decreased, but water use efficiency and harvest index were higher than other treatments. Therefore, it is considered that the soil moisture is concentratedly managed before the V8 period, the V8-VT period is controlled within the range of 100 to 500 kPa (20.3~27.8%), and no additional irrigation is required after the VT.

A study on the vulnerability of field water supply using public groundwater wells as irrigation in drought-vulnerable areas with a focus on the Dangjin-si, Yesan-gun, Cheongyang-gun, and Goesan-gun regions in South Korea

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Hwang, Seon-Ah;Nam, Won-Ho;Park, Chan Gi
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.103-117
    • /
    • 2021
  • The severe effects of climate change, such as global warming and the El Niño phenomenon, have become more prevalent. In recent years, natural disasters such as drought, heavy rain, and typhoons have taken place, resulting in noticeable damage. Korea is affected by droughts that cause damage to rice fields and crops. Societal interest in droughts is growing, and measures are urgently needed to address their impacts. As the demand for high-quality agricultural products expands, farmers have become more interested in water management, and the demand for field irrigation is increasing. Therefore, we investigated water demand in the irrigation of drought-vulnerable crops. Specifically, we determined the water requirements for crops including cabbage, red pepper, apple, and bean in four regions by calculating the consumptive water use (evapotranspiration), effective rainfall, and irrigation capacity. The total consumptive water use (crop evapotranspiration) estimates for Dangjin-si (cabbage), Yesan-gun (apple), Cheongyang-gun (pepper) in Chungnam, and Goesan-gun (bean) in Chungbuk were 33.5, 206.4, 86.1, and 204.5 mm, respectively. The volumes of groundwater available in the four regions were determined to be the following: Dangjin-si, 4,968,000 m3; Yesan-gun, 4,300,000 m3; Cheongyang-gun, 1,114,000 m3, and Goesan-gun, 3,794,000 m3. The annual amounts available for the representative crops, compared to the amount of evapotranspiration, were 313.9% in Dangjin-si, 29.5% in Yesan-gun, 56.1% in Cheongyang-gun, and 20.1% in Goesan-gun.

Development and validation of BROOK90-K for estimating irrigation return flows (관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증)

  • Park, Jongchul;Kim, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.

Simulation of Water Movement in Rockwool Slab as Soil-less Cultivation Using HYDRUS (HYDRUS를 이용한 작물재배용 암면배지에서의 수분 이동 시뮬레이션)

  • Dong-Hyun Kim;Jong-Soon Kim;Soon-Hong Kwon;Jong-Min Park;Won-Sik Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.153-162
    • /
    • 2023
  • It is important to determine water movement at the growing substrate used in soil-less cultivation for better management of water supply. Numerical simulation is a fast and versatile approach to evaluate highly accurate water distribution. The objective of this study is to simulate the water movement in rockwool as a soil-less medium using HYDRUS-2D. HYDRUS-2D was used to simulate the spatial and temporal water movement in two types of rockwool slabs (Floriculture (FL), high density; Expert (EP), low density). The simulation was performed at two pulse conditions: 10 min ON and 50 min OFF (case A), 20 min ON and 40 min OFF (case B). The total irrigation amounts were the same at both cases. In case A, during the irrigation ON, the water contents at FL increased 1.93-fold faster than the values at EP. Whereas, during the irrigation OFF, the decreasing rate of water contents at FL was almost the same as one at EP. At case B, these values were not changed much from case A. However, the duration of optimum water content (50% - 80%) was 15.0 min and 23.5 min at case A and case B, respectively. Thus, FL and 20 min ON and 40 min OFF (case B) could supply water to rockwool much faster and longer than EP. Once qualitatively validated, this simulation of water movement in rockwool could be used to design an effective optimum irrigation method for vegetables.

Graft-take and Growth of Grafted Pepper Transplants Influenced by the Nutrient and Irrigation Management of Scion and Rootstock before Grafting (접목 전 대목 및 접수의 양수분 관리가 고추의 접목활착 및 접목묘의 생육에 미치는 영향)

  • Jang, Yoonah;Mun, Boheum;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.364-370
    • /
    • 2014
  • The nutrient and irrigation management of scion and rootstock can alleviate stress on grafted transplants after grafting and promote the growth. This study investigated the effects of nutrient and irrigation management of scion and rootstock on the graft-take and growth of grafted pepper transplants. Before grafting, the scions were subjected to different water potential regimes in media by controlling the irrigation frequency and time. The scions were subirrigated 0, 1(two days before grafting), 1(one days before grafting) or 2 times for five days before grafting. The irrigation frequency and time influenced the water potential of media and the growth of scion and grafted transplants. At 13 days after grafting, fresh and dry weight of transplants which were irrigated once at two days before grafting were greater by 29 and 34% than those without irrigation during five days before grafting. This suggests that mild water stress on scion prior to grafting by controlling water management alleviate water stress on grafted transplants after grafting and improve the growth. Before grafting, the rootstocks were subjected to different nutrient regimes by controlling nutrient solution application. The rootstocks were supplied with nutrient solution 0, 1, 2, or 4 times. The nutrient application frequency and time influenced the electrical conductivity (EC) and pH of media. Accordingly, the growth and mineral contents of rootstock and grafted transplants were also affected. At 13 days after grafting, fresh and dry weight of transplants with four times of nutrient application increased by 30 and 20%, respectively, than those without nutrient solution supply during seven days before grafting. Therefore, it is recommended that nutrient solution be supplied more than four times during seven days before grafting for the production of high quality transplants.

Effect of PE Film Mulching and Irrigation Method on the Growth, Yield and Antioxidant Activity for Potatoes Grown in Winter Season at Saemangeum Reclaimed Land (새만금 간척지에서 감자 겨울재배시 비닐멀칭 및 관수방법이 생육, 수량 및 괴경의 항산화 활성에 미치는 영향)

  • Choi, Weon-Young;Cho, Kwang-Min;Kim, Sun;Jeong, Jae-Hyeok;Lee, Su-Hwan;Lee, Kyeong-Bo;Lee, Geon-Hwi;Park, Ki-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • This study was conducted to measure the effect of PE film mulching and irrigation methods on the growth, yield and antioxidant activity of potatoes tubers, in order to examine the possibility of cultivating potatoes in winter season in vinyl greenhouse on the reclaimed tidal land with weak ground inside the sea wall currently completed. The test was conducted on the sandy loam soil (Munpo series), and its salt concentration was 0.42% at the time of planting. The emergence speed per kind of PE film mulching was in the order of black > coloration > transparent > green color, with the black color showing the fastest speed. The temperature change during a day per kind of PE film mulching was in the order of transparent > coloration > green > black color. As for the salt concentration in the soil for each different way of water management, the salt concentration in the treatment of drip irrigation with 1 week interval was lower than that drip irrigation with 2 weeks interval. As for the growth of above-aerial part, plant length was higher, number of tiller and leaves were more and dry weight of above-aerial part was larger in the treatment of drip irrigaton with 1 week interval than drip irrigation with 2 weeks interval. As for the yield of potatoes depending on each way of water management, the yield in the treatment of drip irrigation with 1 week interval was more than drip irrigation with 2 weeks interval. The yield for each different kind of PE film mulching in the weekly drip-irrigation management section was in the order of transparent ${\geq}$ black ${\geq}$ coloration ${\geq}$ green color. In both of total phenol content and DPPH free radical activity experiments, the content and activity were higher with pear color vinyl treatment.

A Study on the Growth of Plants with Vegetation Blocks(Green Stone) (식생블록(그린스톤)에서의 식물생육에 관한 연구 - 관수 유무와 방향에 따른 생육비교를 중심으로 -)

  • Kim, Nam-Choon;Han, Seung-Ho;Kang, Jin-Hyoung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.2
    • /
    • pp.57-70
    • /
    • 2003
  • The study was conducted to present the criteria of plant selection and planting design pattern suitable for the vegetation blocks which are becoming more popular for the facade greenery in urban areas. The main results are summarized as follows. 1. Under irrigated conditions, the plant grew better than that of unirrigated conditions and herbs grew better than shrubs. In selection of shrubs, it would be more proper to consider the size and depth of the pockets. 2. Under unirrigated conditions, Sedum middendorffianum and foreign sedums grew well, so it can be concluded that sedums can grow at low management condition. And, Hosta longipes and Aceriphyllum rossii could be survive at low management conditions only if irrigation was conducted at dry season. But, shrubs needed irrigation management for survival at vegetation blocks. 3. The results of this study, it can be concluded that greenery of walls and retaining walls might be effective for the creation of green space, improvement of urban landscapes, and the creation of diverse biotopes in urban areas with vegetation blocks.

Analysis of Water Quality Improvement in Downstream River of Heightening Irrigation Dam through the Reservoir Operation (둑높이기 농업용저수지의 운영을 통한 하천 수질개선 효과 분석)

  • Jee, Yong-Keun;Lee, Mi-Seon;Lee, Jin-Hee;Jang, Jea-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.929-941
    • /
    • 2012
  • In recent years, interest in river environment such as riparian landscape, water quality and ecological conservation has been growing with increasing recreation on agricultural river watershed. That caused the increase of necessity of water resources development, one of solutions for the diversification of agricultural water demand and shortages. In this respects, heightening irrigation dam, as a part of the 4-major river restoration project, is necessary to secure not only additional agricultural water but also instream flow for water quality improvement. However, operation plan of irrigation dam still not be clear. In this study, additional storage which secured through heightening irrigation dam was estimated using SWAT model. And instream flow effects on water quality of downstream were evaluated. The findings show that the additional water supply will contribute positively to water quantity and quality of downstream. The results show a 2~10% water quality improvement effect on nutrients, as well as an 1~8% water quantity increasing effect. In particular, additional storage can be effectively supplied from February to April by the reservoir operation. However, maintaining better water quality in irrigation reservoirs is important because the water quality of irrigation reservoirs can be negatively impacts the water quality in downstream of reservoirs.