• Title/Summary/Keyword: irrigation facility

Search Result 77, Processing Time 0.027 seconds

Analysis of Agricultural Water Distribution Systems for the Utilization of Water-Demand-Oriented Water Supply Systems (물수요 중심 용수공급시스템 활용을 위한 국내 농업용수 공급체계 분석)

  • Lee, Kwang-Ya;Choi, Kyung-Sook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • This study analyzed agricultural water distribution systems for the utilization of water demand-oriented water supply systems. Three major TM/TC(telemeter/telecontrol) districts of agricultural water management were selected for analyzing the characteristics of the water distribution systems. In addition, the characteristics of the water supply systems for general water supply zones based on irrigation facilities were also investigated, along with the case of special water management during the drought season. As a result, high annual and monthly variations were observed for the water supply facilities, including the reservoirs and pumping stations. In particular, these variations were more obvious during the drought season, depending on the type of facility. The operations of the pumping stations and weirs were more sensitive to the stream levels than the reservoirs, and the smaller reservoirs were influenced more than the larger reservoirs. Therefore, a water-demand-oriented water supply system should consider the existing general practices of water management in the agricultural sector, and focus on achieving a laborsaving system rather than water conservation in the case of reservoirs. Equal water distribution from the start to the end point of irrigation channels could be an effective solution for managing pumping stations.

  • PDF

A study on Improvement of Automatic Water Management System in Uiryeong Watershed Area (의령수역의 자동화 물관리 시스템 운영개선연구)

  • Cho, Young-Jea;Lee, Moung-Jun;Kim, Young-Ho;Park, Sang-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.213-214
    • /
    • 2005
  • Uiryung Watershed area, located at the confluence of Nam River and Nagdong River has 9000 ha of agricultural land area and 3024 ha of paddy rice field have been reclaimed and managed by Korean Agricultural and Rural Infrastructure Corporation(KARICO) in the riparian area since 1954. In spite of irrigation and drainage improvement projects in last 3 decades since 1970, there are severe drought and innundation problems in the area. To improve the difficulties and efficient usage of irrigation water not only for agriculture but also for environmental conservation and cultural ceremony, Automatic Water management system has been installed supported by Ministry of Agriculture and Fishery in Korean Government. The control office in Uiryung Branch Office of KARICO, receive all the water management records from Remote Terminal Units in 7 reservoirs and 26 Pump stations to operate the decision supporting system of irrigation and drainage facility during cropping period. Since the completion of the water management system at the end of 2003, the electric cost decrease in 80 % than average years. In spite of decrease of two technical assistants since 2004, complains from farmers for the water management are very rare. The technological experience from the automatic water management system would contribute not only for the efficient water management of Uiryang area but also for the modernization of water management of other watershed areas in the future.

  • PDF

Supporting System far Safe Appraisal and Management of Agricultural Structures using Relational Database and Geographic Information (관계형 데이터베이스와 지형정보를 이용한 농업구조물의 안전점검 및 이력관리 지원시스템)

  • 김종옥;김한중;이정재;고만기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.101-110
    • /
    • 2002
  • Most of the agricultural structures are in shortage of feasible facility management because these structures are small in size and spacially distributed in rural area. Inspection tools based on visual inspections are generally used for agricultural structures in most of the countries, including Korea. It is necessary to survey data of the irrigation structures to maintain records, and to develop the interface program by constructing database of inspection data. This study was conducted to develop a system for safe appraisal and repair works on agricultural irrigation structures. Repair and rehabilitation method can be chosen from an optimum viewpoint if the information between the method and life-cycle management cost of agricultural structures is constructed in the database. In this study, the system assisting onsite field investigation and determining the typical rehabilitation method of typical agricultural structural problems such as fractures and cracks of members was developed.

Development of Screen for small canal (소형 수로용 제진기 개발)

  • Chung, Kwang-Kun;Lee, Kwang-Ya;Kim, Hea-Do;Lee, Jong-Nam
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.164-169
    • /
    • 2005
  • It is design and manufacture which the rake operated in and out of water. Also irrigation test result of several times, the flux inside the waterway collects 0.15m/s to case below the dirt which is accumulated in the rake 30kg, difficulty was to examine closely the thing, it followed hereupon and the grade in the agriculture waterway flux inside the cursor waterway was quick, or, with water level in dirt removal it established in the irrigation facility downstream it will be able to increase a flux, very the possibility of getting an efficient power it is it knew.

  • PDF

Development of the System for Supporting Safe Appraisal on the Agricultural Structures using Relationship Database (관계형 데이터베이스를 이용한 농업구조물의 안전진단 자원시스템의 개발)

  • Kim, Han-Joong;Lee, Jeong-Jae;Kim, Jong-Ok;Ko, Man-Ki
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.231-238
    • /
    • 1999
  • Most of the irrgation structures are shortage of feasible facility management. The surveyed data to irrigation structures related to maintenance record were built and interface program between GIS and database were developed . It was conducted to develope a system for safe appraisal and repair works on agricultural irrigation structures. The system assisting onsite field investigation and determining the typical rehabilitation method of typical agricultural structural problems such as fractures and cracks of members was developed.

  • PDF

Effect of Delayed Transplanting plus Water Stress on the Growth and Yield of the Rice Plants (한발로 인한 벼의 이앙지연 및 수분결핍장애가 생육 및 수량에 미치는 영향)

  • 권용운;소창호;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.3
    • /
    • pp.79-88
    • /
    • 1986
  • Drought occurs most frequently and severely around transplanting season of the rice plants in Korea. Shortage of water due to drought for the paddy fields often delays transplanting, and less often the rice plants are subjected to water stress after delayed transplanting. The present study aimed at quantification of the rice crop loss due to delayed transplanting, different inten3ity of water stress, and the combined effect of delay in transplanting followed by water stress for better use of limited water for irrigation under drought. The rice variety Chucheong, a japonica, and Nampung, an indica x japonica, were grown, transplanted to 1/200 a plastic pots, and subjected to different timing of transplanting and degree of water stress under a rainfall autosersing, sliding clear plastic roof facility with completely randomized arrangement of 5 replications. The results obtained are summarized as follows: 1.Twelve days or 22 days delay in transplanting without water stress reduced rice yield by 25% and 43% in the japonica variety, and by 15% and 60% in the indica x japonica variety. 2.The 10 days or 20 days water stress developed without irrigation after drainage in the rice plants transplanted at proper time lowered the water potential at the paddy soil 10cm deep to -4 bar, and -12 bar and caused rice yield reduction by 14%, and 45% in the japonica variety and by 8%, and 50% in the indica X japonica variety. 3.The 12 days delay in transplanting and 10 days or 20 days water stress reduced rice yield by 39% and 59% in the japonica variety, and by 38% and 52% in the indica x japonica variety. The 22 days delay in transplanting plus 10 days water stress caused yield reduction by 76%, i.e. meaningless yield, in both varieties. 4.The intermittent irrigation just to wet the soil body for 10 days after 10 days water stress without irrigation increased rece yield by 12 to 16% compared to the rice plants water stessed without irrigation continuously for 20 days in both varieties respectively. 5.The above results suggest strongly 1) to transplant the rice plants at proper .time even with some water stress rather than delay for sufficient water from later rainfall, and 2) to distribute insufficient irrigation water to broader area of transplanted rice with limited irrigation for better use of limited irrigation water. A greater sensitivity of japonica variety to a moderate water stress than the indica X japonica variety during initial rooting and tillering stage was noticed. To cope with frequent drought in rice culture, firstly the lasting time of transplanting without yield reduction should be clarified by region and variety, and secondly a scheme of rational distribution of limited water should be developed by region with better knowledge on the varietal distribution of limited water should be developed by region with better knowledge on the varietal responses to varying intensity of water stress.

  • PDF

Development of the Hydraulic Inspection Method for Irrigation Pipeline Systems (관수로 시스템 수리진단 기법 개발)

  • Kim, Young-Hwa;Park, Ji-Sung;Cheong, Byong-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.251-254
    • /
    • 2003
  • For improving the flow capacity of pipeline system the hydraulic inspection method was developed conducting on-site with survey of pipeline facility such as diversion work, air vent, etc. and pipe network analysis. The pipe network analysis method determine pipe diameter with trial and error. The validity of the hydraulic inspection method proved adapting on S-district pipeline system.

  • PDF

Generation and Characteristics Analysis of Swine Manure for Introducing Biogas System (논문 - 바이오가스화 도입을 위한 양돈농가 가축분뇨 발생 및 특성분석)

  • Choi, Eun-Hee;Yoon, Young-Man;Kim, Chang-Hyun
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.25-32
    • /
    • 2011
  • The 21 livestock farms considering future installation of biogas systems were studied. These farms were examined how to raise the livestock, to treat manure, to operate facility with respect to manure characteristics. The 15 farms out of 21 farms have applied to the marine dumping and consignment treatment for treating manure and even farms which have equipped liquid fertilizing system have less capacity facility than legal standards. Characteristics of manure were affected by the scale of swine barn, clean water usage, frequency of cleaning, cleaning method, feces-urine separating method, etc. Retention time in storage (over 20 days) has resulted in lower concentration of organic matter which could reduce biogas production. This indicates that systematic barn management system is required. Inhibition tests showed that disinfectant and citric acid did not affected digestion rates at 10 times higher concentration than recommendation. However hypochlorous acid is likely to affect the anaerobic microbial activity.

  • PDF

Competitiveness of 'Saemi' in Sacheon Alluvial Fan as a Cultural-ecological Niche (문화생태적 적소로서 사천 선상지 '새미'의 경쟁력)

  • Dohyun Kim;Myeongcheol Jeong;Kichun Seo
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.516-532
    • /
    • 2023
  • This study is the result of analyzing the distribution of 129 Saemies discovered based on field research conducted from September 2021 to June 2023 in the Sacheon alluvial fan area through ethnoscience and niche theory. The researcher viewed the Sacheon alluvial fan area as a suitable location for irrigation where both traditional and modern hydraulic facilities are used, and the cultural and ecological study of 'Saemi', a traditional irrigation facility that attracts attention for its public value for the ecological environment according to the sustainable paradigm. By revealing its competitiveness, we aimed to contribute to finding ways to sustainably conserve and utilize Saemi. As a result of the study, Saemi is confirmed to be a competitive water facility in terms of cultural and ecological quality, considering the direction of the times and the sustainable development. If environment-friendly agricultural technology is applied to traditional water treatment facilities in the context of sustainable agriculture, it is expected that synergy will be created in productivity, public interest, and sustainability.