• Title/Summary/Keyword: irrigated paddy field

Search Result 73, Processing Time 0.021 seconds

Comparison of Total and Inorganic Arsenic Contamination in Grain and Processed Grain Foods (곡류 및 곡류 가공식품의 총비소 및 무기비소 오염 비교)

  • Eun-Jin, Baek;Myung-Gil, Kim;Hyun-Jue, Kim;Jin-Hee, Sung;You-Jin, Lee;Shin-Hye, Kwak;Eun-Bin, Lee;Hye-Jin, Kim;Won-Joo, Lee;Myung-Jin, Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.385-393
    • /
    • 2022
  • The contamination level of inorganic arsenic, a human carcinogen, was investigated in 87 grains and 66 processed grain foods. Two inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) and four organic arsenic monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine were analyzed using HPLC-ICP/MS with high separation and sensitivity and ICP/MS was used to quantify total arsenic. Inorganic arsenic was detected in all grains. And the total arsenic in grains consists of about 70-85% inorganic arsenic and about 10-20% DMA. The concentration of inorganic arsenic was high in rice and black rice cultivated in paddy soil with irrigated water, while the miscellaneous grain in field was low. Mean concentration of inorganic arsenic in rice germ, brown rice and polished rice was 0.160 mg/kg, 0.135 mg/kg, 0.083 mg/kg, respectively, indicating that rice bran contains more arsenic. In processed grain foods, inorganic arsenic concentration varied according to the kind of ingredients and content, and the detection amount was high in processed food with brown rice and germ. The arsenic content of all samples did not exceed each standard, but the intake frequency is high and it is considered that continuous monitoring is necessary for food safety.

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

Studies on The Effects of Several Methods Irrigation Control Affecting The Growth and Yields of Rice Plants and Saving the Irrigation Water (관개조절의 몇가지 방식이 수함의 생육 및 수량과 관개수절약에 미치는 영향에 관한 연구)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.3
    • /
    • pp.2322-2341
    • /
    • 1971
  • The studies were conducted to determine the methods of irrigation control which is not only able to save the irrigation water as a adaptable measures for the insufficient irrigation water and the drought but also increase the yields of rice, in the paddy field which shows over percolating tendency through the couple years of 1968 and 1969 at Suwon. These experiments were carried with late maturing rice variety, Norim No. 6 and the major treatments in this experiments were filling the clay under surface soil, periodic irrigation and lining the Vinyl under the surface soil and three replicated completely randomized design was employed. Results obtained will be summarzed as follows. 1. Through the couple years, the plots tilled the clay under 15cm of the surface soil saved the irrigation water by 364% to 45% and 78% to 88% respectively. Particulary, the plot of filling the clay with 9cm thick under 15cm of the surface soil, saved the amount of irrigation water by 45% to 88% and also increased yields by 12% to 20% through the couple years. 2. The plots in which amount of 40mm of irrigation water is irrigated periodically from 5 to 8 days at the stages of tillering and ripening, saved theamount of irrigation water by 41% to 55% and also increased yields by 10% to 16% respectively through the couple years. 3. The plot lined the Vinyl under 15cm of the surface soil, saved the amount of irrigation water by 75% to 88% in accordance with the size of hole. The plot of lining the Vinyl with $3cm/m^2$ hole yielded almost same as the check plot, but in the case of lesser hole than above yielded less. 4. The plots inserted the Vinyl paper in 57cm depth and with 6cm height from the soil surface around the plot to prevent the ridge percolation reduced the amount of percolation by 25% to 33%. 5. The plot filled the wheat straw with 6cm thick under 15cm of the surface soil increased yields by 30% in former year but opposite results were gained in later year. 6. Generally, yields and yield components such as number of spikes of spikes per hill and number of grains per spike were decreased in 1969. These faots are considered to depend upon the rainy and cold weather in the stages of vigorous tillering and less sunshine in the stages of ripening. 7. The variation of characters among the plots will be summarized as follows. (1) Tallerplant height was found in the plots of clay filling and irrigation control. (2) longer culm length and higher yields were founds in the plots filled the clay with 9cm thick and controled the irrigation periodically froir 7 to 8 days. (3) Length of spike increased generally with yields but opposite tendency was found also. (4) Number of spikes per hill increased with yields in the plots of irrigation control. (5) Number of grains per spike increased with yields in the plots filled the clay with 9cm thick and controled irrigation periodically from 5 to 8 days. (6) Tendency of variation of 1000 grain weight is similar to Number of grains per spike. (7) Percentage of complete grains increased in the plot of clay filling and irrigation control.

  • PDF