• 제목/요약/키워드: irreversible strain/stress limit

검색결과 3건 처리시간 0.02초

Influence of brass laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

  • Bautista, Zhierwinjay M.;Shin, Hyung-Seop;Lee, Jae-Hun;Lee, Hunju;Moon, Seung-Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.6-9
    • /
    • 2016
  • The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their $I_c$ behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of $I_c$ in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

Measurement reliability of irreversible stress/strain limits in Sn-Cu double layer stabilized IBAD/RCE-DR processed GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Bautista, Zhierwinjay;Diaz, Mark Angelo;Shin, Hyung-Seop;Lee, Jae-Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.36-40
    • /
    • 2018
  • In this study, the electromechanical properties in Sn-Cu double layer stabilized GdBCO coated conductor (CC) tapes with and without external lamination under uniaxial tension were examined at 77 K and self-field. Their irreversible stress and strain limits were determined using a loading-unloading scheme based on different critical current ($I_c$) recovery criteria. The repeated tests were performed and statistical estimation was done to check the reproducibility depending on the criterion adopted in evaluating the electromechanical properties. From the results, it showed that the Sn-Cu double-layer stabilized CC tapes have the higher irreversible stress limit, but lower irreversible strain limit as compared to brass laminated ones. Through the repeated tests, it can be found that a small scattering of irreversible limits existed in both CC tape samples. Finally, similar strain sensitivity of $I_c$ in both CC tapes was obtained.

Mechanical and electro-mechanical analysis in differently stabilized GdBCO coated conductor tapes with stainless steel substrate

  • Nisay, Arman R.;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.29-33
    • /
    • 2013
  • The understanding of the strain dependence of critical current, $I_c$, in the reversible region is important for the evaluation of the performance of coated conductor (CC) tapes in practical applications. In this study, the stress/strain tolerance of $I_c$ in GdBCO CC tapes with stainless steel substrate stabilized by additional Cu and brass laminate was analyzed quantitatively through $I_c$-strain measurement at 77 K under self-field. The variation in irreversible strain limits of CC tapes by the addition of stabilizing layers was analyzed through the consideration of the pre-strain induced on the GdBCO coating film. The results were then compared with the ones previously reported for GdBCO CC tapes with Hastelloy substrate. As a result, GdBCO CC tapes with stainless steel substrate showed much higher strain tolerance of $I_c$ as compared with those adopting Hastelloy substrate.