• Title/Summary/Keyword: irreversible inhibition

Search Result 54, Processing Time 0.026 seconds

Diabetic Atherosclerosis and Glycation of LDL(Low Density Lipoprotein)

  • Park, Young-June;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.134-142
    • /
    • 1996
  • Diabetes carries an increased risk of atherosclerotic disease that is not fully explained by known car-diovascular risk factors. There is accumulating evidence that advanced glycation of structural proteins, and oxidation and glycation of circulating lipoproteins, are implicated in the pathogenesis of diabetic ather-osclerosis. Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the ather-ogenic potential of certain plasma constituents, including low density lipoptotein(LDL). Glycation of LDL is significant increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls ; enhanced uptake of LDL by the macrophages, thus stimulating foam cell formation ; increased platelet aggregation; formation of LDL-immune complexes ; and generation of oxygen free radicals, resulting on oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterzied by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation" occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age : in diabetes, their rate of accumulate is accelerated. Inhibition of glycation, oxidation and glycoxidation may form the basis of future antiaterogenic strategies in both diabetic and nondiabetic individuals.dividuals.

  • PDF

Effect of Juglans sinensis Dode aquacupuncture(JS) on t-butylhydroperoxide-induced alterations in membrane transport function in renal epithelial cells (신장상피세포(腎臟上皮細胞)에서 호도약침액(胡桃藥鍼液)이 t-Butylhydroperoxide에 의한 세포막물질이동계(細胞膜物質移動系)의 장애(障碍)에 미치는 영향(影響))

  • Narm, Sang-pil;Cho, Tai-sung;Kim, Cheol-hong;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Ahn, Chang-beohm
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.128-139
    • /
    • 2003
  • Juglans sinensis Dode has been reported to have antioxidant activity. However, the effect of Juglans sinensis Dode aquacupuncture(JS) on reactive oxygen species(ROS)-induced alterations in membrane transport function in renal tubular cells. This study was performed to evaluate the effect of JS on the organic hydroperoxide t-butylhydroperoxide(tBHP)-induced inhibition of $Na^+$-dependent phosphate($Na^+$-Pi) uptake in opossum kidney (OK) cells, an established renal proximal epithelial cell line. tBHP inhibited $Na^+$-Pi uptake in a time-dependent manner. The inhibitory effect of tBHP was prevented by JS over concentration range of 0.05-1mg/100ml in a dose-dependent manner. Kinetic studies showed that tBHP caused an decrease in Vmax for $Na^+$-Pi uptake without any a significant change in Km. $Na^+$-dependent phosphonoformic acid binding, a irreversible inhibitor of renal $Na^+$-Pi uptake, was decreased by tBHP treatment. The reduction in Vmax and phosphonoformic acid binding by tBHP was prevented by JS. tBHP induced lipid peroxidation and its effect was completely inhibited by JS and antioxidant N,N'-diphenyl-p-phenylenediamine. These data suggest that the oxidant inhibits phosphate uptake by a reduction in the number of active carrier across the membrane. JS may prevent oxidant-induced inhibition of membrane transport function by a mechanism similar to antioxidants in renal epithelial cells. Although the precise constituents remain to be explored, JS may be employed as a useful candidate herb for drug development to prevent and treat oxidant-mediated renal failure.

  • PDF

Effects of Porphyromonas gingivalis extracts on the function of mouse calvarial primary osteoblastic cells (Porphyromonas gingivalis 추출물이 마우스 두개골 일차 조골세포의 기능에 미치는 효과)

  • Yun, Jeong-Ho;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.585-597
    • /
    • 2003
  • Porphyromonas gingivalis has been implicated as an important periodontophathic bacterium in the etiology and progression of periodontal diseases. It has been reported that P.gingivalis may mediate periodontal destruction not only directly through its virulence factors, but also indirectly by including complex host mediated inflammatory reponses. The purpose of this study was t o evaluate the effects of P.gingivalis on the bone formation and resorption by osteoblasts. For this purpose, after determining the concentration below which sonicated P.gingivalis extracts (SPEs) have no cytotoxicity on mouse calvarial primary osteoblastic (POB) cells, we investigated the effects of SPEs on the alkaline phosphatase (ALP) activity, matrix metalloproteinase (MMP) expression (MMP-2, -9, 13), and prostaglandin $E_2$ ($PGE_2$) release in POB cells by treatment with SPEs below that concentration. The results were as follows; 1. SPEs showed no cytotoxic effect on POB cells up to a concentration of 1 ${\mu}m$/ml. 2. The treatment with SPEs reduced ALP activity in a dose-dependent manner in POB cells, In addition, when we investigated the effect of SPEs (1 ${\mu}m$/ml) on ALP activity for different exposure periods, statistically significant inhibition of ALP activity was shown at 2 days of exposure, and further significant inhibition occurred by extending the periods of exposure. 3. The treatment with SPEs stimulated the gene expression of MMP-9 in POB cells. 4. The pre-treatment with SPEs increased the amount of $PGE_2$ released in POB cells. In summary, the present study shows that P.gingivalis could inhibit osteogenesis and stimulate bone resorption not only by reducing ALP activity but also by increasing MMP-9 mRNA expression in osteoblasts, possibly through an endogenous $PGE_2$ pathway. In addition, our results suggest that if P.gingivalis affects osteoblasts in early differentiation stage, such effects by P. gingivalis could be irreversible.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF

Gene Structure of Cotesia plutellae Bracovirus (CpBV)-$I_{k}B$ and Its Expression Pattern in the Parasitized Diamondback Moth, Plutella xylostella (프루텔고치벌 브라코바이러스(Cotesia plutellae Bracovirus) 유래 $I_{k}B$ 유전자 구조와 피기생 배추좀나방(Plutella xylostella) 체내 발현 패턴)

  • Kim Yong-Gyun;Basio Neil A.;Ibrahim Ahmed M.A.;Bae Sung-Woo
    • Korean journal of applied entomology
    • /
    • v.45 no.1 s.142
    • /
    • pp.15-24
    • /
    • 2006
  • Inhibitor kB (IkB)-like gene has been found in the genome of Cotesia plutellae bracovirus (CpBV), which is the obligatory symbiont of an endoparsitoid wasp, C. plutellae. The open reading frame of CpBV-IkB was 417 bp and encoded 138 amino acids. Four ankyrin repeat domains were found in CpBV-IkB, which shared high homology with other known polydnavirus IkBs. Considering a presumptive cellular IkB based on Drosophila Cactus, CpBV-IkB exhibited a truncated structure with deletion of signal-receiving domains, which suggested its irreversible inhibitory role in NFkB signal transduction pathway of the parasitized host in response to the wasp parasitization. CpBV-IkB was expressed only in the parasitized diamondback moth, Plutella flostella. Its expression was estimated by quantitative RT-PCR during parasitization period, showing a constitutive expression pattern from the first day of parasitization. An indirect functional analysis of CpBV-IkB was conducted and suggested a hypothesis of host antivirus inhibition.

Effects of Organotin Compounds on Follicular Steroidogenesis in Frogs

  • Kwon, Hyuk-Bang;Kim, Seung-Chang;Kim, An-Na;Lee, Sung-Ho;Ahn, Ryun-Sup
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.163-172
    • /
    • 2009
  • Some organotin compounds such as butyltins and phenyltins are known to induce impo-sex in various marine animals and are considered to be endocrine disruptors. In this study, the effect of organotins on follicular steroidogenesis in amphibians was examined using ovarian follicles of Rana dybowskii and Rana catesbeiana. Isolated follicles were cultured for 6 or 18 h in the presence and absence of frog pituitary homogenate (FPH) or various steroid precursors, and the levels of product steroids in the culture media oassay. Among the butyltin compounds, tributyltin (TBT) strongly and dose-dependently inhibited the FPH-induced synthesis of pregnenolone ($P_5$) and progesterone ($P_4$) by the follicles. TBT also strongly suppressed the conversion of cholesterol to $P_5$ and partially suppressed the conversion of $P_5$ to $P_4$. A high concentration of dibutyltin (DBT) also inhibited steroidogenesis by the follicles while monobutyltin and tetrabutyltin had negligible effects. The toxic effect of TBT or DBT was irreversible and a short time of exposure (30 min) was enough to suppress steroidogenesis. All the phenyltin compounds significantly inhibited FPH-induced $P_5$ synthesis by the follicles. The effective dose of 50% inhibition by diphenyltin was $0.04\;{\mu}M$ and those of monophenyltin and triphenyltin were $0.24\;{\mu}M$ and $0.3\;{\mu}M$, respectively. However, none of the phenyltin compounds significantly suppressed the conversion of $P_4$ to $17{\alpha}$-hydroxyprogesterone ($17{\alpha}$-OHP) (by $17{\alpha}$-hydroxylase), $17{\alpha}$-OHP to androstenedione (AD) (by $C_{17-20}$ lyase), or AD to testosterone by the follicles. Taken together, the data show that among the steroidogenic enzymes, P450scc in the follicles is the most sensitive to organotin compounds and that an amphibian follicle culture system can be a useful screening model for endocrine disruptors.

  • PDF

Induction of G1 Phase Cell Cycle Arrest and Apoptotic Cell Death by 5-Fluorouracil in Ewing′s Sarcoma CHP-100 Cells (CHP-100 Ewing′s 육종세포에서 5-fluorouracil에 의한 G1 arrest 유도 및 apoptosis 유발에 관한 연구)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1015-1021
    • /
    • 2016
  • 5-fluorouracil (5-FU), a pyrimidine analog, is a widely used anticancer drug, which works through irreversible inhibition of thymidylate synthase. In the present study, it was investigated the anti-proliferative effects and molecular mechanisms of 5-FU using Ewing's Sarcoma CHP-100 Cells. The present data indicated that treatment of 5-FU to CHP-100 cells induced a G1 phase arrest of the cell cycle in a time-dependent manner. 5-FU-induced G1 arrest was correlated with the accumulation of the hypophosphorylated form of the retinoblastoma protein (pRB) and association of pRB with the transcription factors E2F-1 and E2F-4. Although 5-FU treatment did affect the levels of cyclin-dependent kinases, the levels of cyclin A and B were markedly down-regulated as compared with the untreated control group. In addition, 5-FU-induced G1 arrest of CHP-100 cells was also associated with the induction of apoptosis, as determined by apoptotic cell morphologies, degradation of poly(ADP-ribose) polymerase and Annexin V staining. Furthermore, 5-FU induced the loss of mitochondrial membrane potential with up-regulated pro-apoptotic Bax expression, down-regulated anti-apoptotic Bcl-2 expression and cytochrome c release from mitochondria to cytosol. Collectively, the data suggest that 5-FU is effective in inducing cell growth reduction and apoptosis, in part, by reducing phosphorylation of pRB and activating mitochondrial dysfunction in CHP-100 cells.

Antifungal Activity of Bacillus Subtilis HK2 against Trichothecium Roseum Causing Pink Rot of Melon and White Stain Symptom on Grape (멜론 분홍빛썩음병과 포도 흰얼룩병의 원인균인 Trichothecium Roseum에 대한 Bacillus Subtilis HK2의 항균활성)

  • Oh, Soh-Young;Lee, En-Young;Nam, Ki-Woong;Yoon, Deok-Hoon
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • Pink Rot on melon and White Stain Symptom on grape are caused by Trichothecium roseum, one of the most important diseases of grape and melon. These diseases have been occurred in national-wide in Korea and causes irreversible damage on the grape and the melon at harvest season. This research presents the evaluation of the capacity of Bacillus subtillis HK2 to protect both melon and grape against T. reseum and establishes its role as a biocontrol agent. In this study, we isolated a Bacillus strain HK2 from rhizosphere soil, identified it as Bacillus subtillis by 16S rRNA analysis and demonstrated its antifungal activity against T. roseum. Under I-plate assay it was observed that the effect of hyphal growth inhibition was not due to production of volatile compounds. The optimum culture condition of HK2 was found at 30℃ and initial pH of 7.0. Application of HK2 culture suspension reduced 90.2% of white stain symptom on grape as compared to control, resulting in greater protection to grape against T. roseum infestation. Butanol extract of HK2 culture purified using flash column chromatography. The antifungal material was a polar substance as it showed antifungal activity in polar elute. Therefore, our results indicated a clear potential of B. subtilis HK2 to be used for biocontrol of Pink rot in melon and white stain symptom on grape caused by T. roseum.

Effect of Methionine Sulfoximine in nitrogenase activity by ammonia and glutamine in Rhodopseudomonas sphaeroides (암모니아와 glutamine에 의한 Rhodopseudomonas sphaeroides의 질소 고정 효소활성에 미치는 Methionine Sulfoximine의 영향)

  • 이혜주
    • Korean Journal of Microbiology
    • /
    • v.26 no.3
    • /
    • pp.215-222
    • /
    • 1988
  • The effect of ammonia and glutamine on nitrogenase activity of Rhodopseudomonas sphaeroides was examined. The nitrogenase activity of this strain was inhibited by ammonia and glutamine. When ammonia and glutamine were exhausted, nitrogenase activity promptly resumed at its original rate. Methionine sulfoximine (MSX), irreversible glutamine synthetase (GS) inhibitor, is a structural analogue of glutamate. MSX was used in order to know whether the nitrogenase activity was inhibited by ammonia and glutamine directly or not. The ability of MSX to prevent nitrogenase switch-off by ammonia was found to be dependent upon the phase of culture. When the cells were sampled after 12 hour culture, $500{\mu}M$ MSX would not prevent the nitrogenase switch-off by ammonia. Twenty one percents of GS actibity was inhibited by $500{\mu}M$ of MSX and concentration of released ammonia decreased. But nitrogenase activiy was still inhibited by ammonia. However, nitrogenase switch-off after 20 hours would be prevented by $100{\mu}M$ of MSX. On the other hand, GS activity was ingibited completely by $100{\mu}M$ MSX and concentration of released ammonia somewhat increased. But nitrogenase activity was not inhibited. The data indicated that the inhibition of in vivo nitrogenase actibity of Rp. sphaeroides by ammonia seemed to be mediated by products of ammonia assimilation rather than by ammonia itself.

  • PDF

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.