• Title/Summary/Keyword: irrecoverable strain

Search Result 15, Processing Time 0.01 seconds

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Analysis of Post Weld Deformation at HAZ by External Forces Based on Inherent Strain (고유변형도 기반 열변형부의 후속 하중에 기인한 용접 후 변형 해석)

  • Kim, Jong-Tae;Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.220-227
    • /
    • 2006
  • In case of welding, the inherent strains are generated, because a structure experiences the plastic yielding. The inherent strain is defined as the irrecoverable strain after removing structural restraints and loading. For the analysis method of welding distortion, equivalent loading method based on inherent strain is in general use due to its efficiency and effectiveness. However, it is generally difficult to know the final strain of the welded structure if additional loadings were applied after welding. for this reason, this study introduced the concept of the hardening and added the hardening term to the equivalent loading method based on inherent strain. Therefore, the purposes of this study are to develop the inherent strain formula considering the hardening effect and to calculate residual Stresses Using Proposed inherent Strain. Also, this Study Verified the availability Of proposed inherent strain method by loading-unloading experiment on welded plate.

Analysis of Post-Weld Deformation at the Heat-Affected Zone Using External Forces Based on the Inherent Strain

  • Ha, Yun-Sok;Jang, Chang-Doo;Kim, Jong-Tae;Mun, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.56-62
    • /
    • 2007
  • An analytical method to predict the post-weld deformation at the heat-affected zone (HAZ) is presented in this paper. The method was based on the assumption that the post-weld deformation is caused by external forces resulting from the inherent strain, which is defined as the irrecoverable strain after removing structural restraints and loadings. In general, the equivalent loading method can be used to analyze distortions in welding areas because it is efficient and effective. However, if additional loads are applied after welding, it is difficult to determine the final strain on a welded structure. To determine the final strain of a welded structure at the HAZ more accurately, we developed a modified equivalent loading method based on the inherent strain that incorporated hardening effects. The proposed method was applied to calculate the residual stress at the HAZ. Experiments were also conducted on welded plates to evaluate the validity of the proposed method.

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

Creep Characteristics of Unconsolidated Shale (미고결 셰일의 크립 특성)

  • Chang, Chan-Dong;Zoback, Mark
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-200
    • /
    • 2006
  • Laboratory creep experiments show that compaction of unconsolidated shale is an irrecoverable process caused by viscous time-dependent deformation. Using Perzyna's viscoplasticity framework combined with the modified Cam-clay theory, we found the constitutive equation expressed in the form of strain rate as a power law function of the ratio between the sizes of dynamic and static yield surfaces. We derived the volumetric creep strain at a constant hydrostatic pressure level as a logarithmic function of time, which is in good agreement with experimental results. The determined material constants indicate that the yield stress of the shale increases by 6% as strain rate rises by an order of magnitude. This demonstrates that the laboratory-based prediction of yield stress (and porosity) may result in a significant error in estimating the properties in situ.

  • PDF

Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.

Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

Experiments for the Fatigue Behavior of High Strength Concrete (고강도콘크리트의 피로거동에 관한 실험적 연구)

  • 김진근;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.161-166
    • /
    • 1992
  • In this paper, the effect of compressive strength on the fatigue behavior of plain concrete was studied. The fatigue behavior of plain concrete in uniaxial compression is somewhat affected by the compressive strength of the concrete. Concrete cylindrical specimens(100$\times$200mm) with compressive strength of 265kg/$\textrm{cm}^2$, 530kg/$\textrm{cm}^2$ , 860kg/$\textrm{cm}^2$ and 1053kg/$\textrm{cm}^2$ were tested and analyzed on the fatigue strength, In addition to fatigue strength, the deformation characteristics of the concrete subjected to fatigue loading was investigated. The fatigue strength was decreased for the high-strength concrete. The deformation studies indicated that the irrecoverable strain in normal strength concrete is greater than that in high strength concrete.

  • PDF

A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability (소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측)

  • Kim S. W.;Kim J.;Park H. J.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF