• Title/Summary/Keyword: iron transportation

Search Result 53, Processing Time 0.019 seconds

A Study on the Magnetic Levitation Technology for Iron Plate Conveyance (강판운송을 위한 자기부상기술에 관한 연구)

  • 조경재;차인수;이권현
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.95-98
    • /
    • 1998
  • Applying the magnetically levitated transportation system, which is noncontact bearing system, to solve the problems such as transformation of original form or flaw of iron plate caused by transportation of thin iron plate which required high quality as body of motor vehicle, materials of electronic devices etc.. Magnetic saturation phenomena caused by thickness of iron plate and gap size between magnets. In case of iron plate, the vibration mode will be considered since vibration occurs during transportation. In order to solve the problems caused by vibration, choose the levitation system method using numbers of magnet, magnetic saturation for thickness and length of iron plate with parameters in location and gap of magnet. In this paper, we will suggest the whole design technique of magnetically levitated transportation system, namely method of magnetic attraction and transportation system

  • PDF

Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products (철부식생성물 저감을 위한 고온 pH(t) 상향 연구)

  • Shin, Dong-Man;Hur, Nam-Yong;Kim, Wang-Bae
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.175-179
    • /
    • 2011
  • The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper.

Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene

  • Wang, Ju-Hua;Xue, Xiu-Heng;Zhou, Jie;Fan, Cai-Yun;Xie, Qian-Qian;Wang, Pan
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.335-339
    • /
    • 2015
  • Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $HCO_3{^-}$ in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.

The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 (Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성)

  • Yang, Su-Bin;Yoo, Gi-Won;Jang, Byeong-Chan;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2014
  • In this study, a positive-electrode material in a lithium secondary battery $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$ was synthesized as precursor by co-precipitation. Cathode material was synthesized by adding iron. The synthesized cathode material was analyzed by scanning electron microscope and x-ray diffraction. The analysis of x-ray diffraction showed that the a-axis and c-axis is increased by doping iron. And $I_{(003)}/I_{(104)}$ is increased and $I_{(006)}+I_{(102)}/I_{(101)}$ is decreased. Through this result, it was confirmed that the structural stability is improved. And impedance measurements show that the charge transfer resistance ($R_{ct}$) is lowered by doping iron. Consequently, electrochemical properties are improved by doping iron. In particular, the cycle characteristics are improved at a high temperature condition (328 K). Structural stabilities are contributing to the cycle properties.

A Study on Customary Practices in Iron Ore and Steel Product Shipping Contract - Case of Long-term Shipping Contracts in Korea

  • Kim, Hyungjun;Kim, Jae-bong;Oh, Yong-sik
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.128-135
    • /
    • 2020
  • Long-term shipping contracts represent the cooperative and coexisting relationships between the shipping and steel industries. Yet, differences between the contract forms for iron ore and steel products have emerged. Specifically, the large proportion of consecutive voyage charters (CVC) is being applied in the iron ore trade, whereas the contract of affreightment (COA) is proportionally higher for shipping steel products. The literature review and in-depth interviews in this study identified through the research model, the characteristics of the shipping and market structure in both markets have significantly contributed to the preference of different long-term contracts. It has been determined that the mutual oligopoly market structure and the characteristics of shipping such as, the small number of suitable vessels in the market, the single fixed load/discharge ports, the long-distance voyages, and the potential risks for fatal accidents because of cargo liquefaction, for the iron ore trade, provide higher contribution to the preference of CVC contracts. In contrast, the consignor oligopoly market structure and the shipping characteristics, such as the greater number of suitable vessels available in the market, the variation in ports, the cargo quantity per shipment, the various load/discharge ports, and the need for experienced carriers for steel product loading in the steel product trade has shown higher preference on the COA contracts as the consignors with superiority over the shipowners, resulting in favorable contract types and conditions for the consignors.

Color revelation characteristics of color mortar using iron oxide and carbon black (산화철과 카본블랙을 사용한 컬러 모르터르의 색상발현 특성)

  • Seok, Hwa-Song;Hong, Chang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.156-161
    • /
    • 2020
  • Recently, as there has been growing demand for aesthetic quality in structural materials, the development of excellent color cement concrete having good coloration properties has become a requirement. This study is designed to analyze the basic physical properties of mortar and the properties of keeping the coloration under an ultraviolet ray accelerated weathering test environment according to changes in the mixing ratio between carbon black and iron oxide used as colorants. The test results show that the use of carbon black and iron oxide reduces the initial flow by 6.3~17.2 % and the air content by 3.5~31.5 % but increases the unit volume weight by 3.4~5.5 %, compared to ordinary Portland cement (OPC). In addition, the study shows that the addition of iron oxide increases the self drying shrinkage. So, caution needs to be taken on the workability of the concrete. The brightness value L represented by black showed the most excellent black colour when carbon black 3 % and iron oxide 5 % are added. According to UV accelerated weatherproof test, the brightness value L was found to increase in all experiment specimens by 4.28~11.97 %, and the color change by UV was found to be higher for the case where carbon black colorant was not used. Therefore, in terms of color revelation characteristics, the case using carbon black 3 % and iron oxide 5 % was found to show the best black color.

A System Dynamics Model for Basic Material Price and Fare Analysis and Forecasting (시스템 시뮬레이션을 통한 원자재 가격 및 운송 운임 모델)

  • Jung, Jae-Heon
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.61-76
    • /
    • 2009
  • We try to use system dynamics to forecast the demand/supply and price, also transportation fare for iron ore. Iron ore is very important mineral resource for industrial production. The structure for this system dynamics shows non-linear pattern and we anticipated the system dynamic method will catch this non-linear reality better than the regression analysis. Our model is calibrated and tested for the past 6 year monthly data (2003-2008) and used for next 6 year monthly data(2008-2013) forecasting. The test results show that our system dynamics approach fits the real data with higher accuracy than the regression one. And we have run the simulations for scenarios made by possible future changes in demand or supply and fare related variables. This simulations imply some meaningful price and fare change patterns.

  • PDF

Research on the ancient iron technology of Jungwon, the center of iron industry (제철산업의 중심 중원에서 고대 제철기술을 탐구하다)

  • Do, Eui Chul;Lee, Eun Woo;Seok, Je Seop;Jang, Min Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.1
    • /
    • pp.148-165
    • /
    • 2015
  • Iron was one of the most influential factors for formation and development of ancient countries. The diffusion of ironware had increased agricultural productivity and brought about military technical revolution. Needless to say, the rise and fall of the countries depended on the possession of stable iron production. Raw materials and fuels are the key factors for mass production of iron and a transportation route is essential to supply the goods. Jungwon area satisfies the three factors. There are many iron manufacture sites such as Jincheon Seokjang-ri Gusan-ri, and Chunju Chilgeum-dong Tangeumdae earthen ramparts in the Jungwon area. In order to study the ancient iron manufacture technique, reconstitution experiment was carried out using restored furnace which was made based on the Jincheon Seokjang-ri B-23 furnace. Some notable results were identified with the experiment as in the followings. Firstly, a roasting process has a connection with the decrease of hardness of the iron ore. Secondly, melting of the blast pipe as well as the formation of product within the furnace had a crucial effect on the cessation of the experiment. Thirdly, reduced iron in various locations within the furnace prove that there was enough reducing environment during the working. Not only melting point but also properties of iron can vary depending on the carbon contents. For the reason, formation of approximate environment in which iron can react to the chalcoal is the most important factor in terms of iron manufacture.

Study on Performance Experiment and Analysis of Aluminum Disc Brake (알루미늄 디스크 브레이크의 성능 실험 및 해석에 관한 연구)

  • Ryu, Mi-Ra;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho;Shim, Jae-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-68
    • /
    • 2013
  • The present research aims to develop aluminum disc brakes to replace existing cast iron disc brakes in automobiles. The foundation for developing an aluminum disc is laid by investigating the performance characteristics of existing cast iron disc brakes and comparing those characteristics with those of aluminum disc brakes. This study involves FEM thermal/structural analysis of disc materials and experimental tests using a brake dynamometer. The results of this study show that, aluminum discs have not only better thermal/mechanical properties than existing cast iron discs, including better heat, wear, and crack resistance, but also that aluminum discs. Weigh less than existing cast iron discs, which results in improved maneuverability. Aluminum discs will become a more essential part of automobiles as electric cars become the major means of transportation.

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.