• Title/Summary/Keyword: iron species

Search Result 278, Processing Time 0.025 seconds

Two Heptageniid Mayflies, Iron martinus Braasch and Sold${\acute}$n and Iron longitibius New Species (Ephemeroptera: Heptageniidae), from Vietnam (베트남산 납작하루살이류 2종, Iron martinus Braasch and Sold${\acute}$n 및 Iron longitibius New Species (하루살이목: 납작하루살이과))

  • Nguyen, Van Vinh;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.102-105
    • /
    • 2004
  • Larvae of two heptageniid mayflies, Iron martinus Braasch and Sold${\acute}$n and Iron longitibius sp. n., are described from Vietnam. The larva of I. martinus is distinguished by the paired spines on the abdominal segments 1-9; the larva of I. longitibius sp. n. is distinguished by the relatively long foretibiae. Their descriptions, diagnoses, line drawings of key characters, material examined, distributions, and habitat and biology data are provided.

Treatment of Phosphorus Species using Iron Coagulation and Fenton Oxidation (철염 응집과 펜톤 산화를 이용한 인의 존재형태별 처리)

  • Park, Sung-Hwan;Moon, Byung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.653-657
    • /
    • 2014
  • Effects of $H_2O_2$ addition for fenton oxidation on iron coagulation for treatment of phosphorus species, such as orthophosphate, metaphosphate, pyrophosphate, organic phosphate, were investigated. The effects of coagulant dosage, hydrogen peroxide dosage and the combined sequence ferric coagulation and $H_2O_2$ addition for fenton oxidation and coagulation were studied. The characteristics of floc growth rate were monitored using the PDA. The removal efficiencies of phosphorus species by iron coagulation were increased as Fe/P molar ratio increased. However, the removal efficiencies of metaphosphate, pyrophosphate, organic phosphate by a ferric coagulation were not increased as Fe/P molar ratio increased. The removal efficiency of metaphosphate, pyrophosphate, organic phosphate was increased by using iron coagulation and $H_2O_2$ addition for fenton oxidation. The result indicated that non-reactive phosphorus after iron coagulation was changed to reactive phosphorus by $H_2O_2$ addition for fenton oxidation and the oxidized iron enhanced the coagulation efficiencies.

Comparative Studies of Protein Modification Mediated by Fenton-like Reactions of Iron, Hematin, and Hemoglobin: Generation of Different Reactive Oxidizing Species

  • Kim, Young-Myeong;Kim, Sung-Soo;Kang, Gu;Yoo, Yeong-Min;Kim, Ki-Mo;Lee, Mi-Eun;Han, Jeong-A;Hong, Sun-Joo
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.161-169
    • /
    • 1998
  • TThe reactive oxygen species oxidatively modify the biological macromolecules, including proteins, lipids, and nucleic acids. Iron- and heme-mediated Fenton-like reactions produce different pro-oxidants. However, these reactive products have not been clearly characterized. We examined the nature of the oxidizing species from the different iron sources by measuring oxidative protein modification and spectroscopic study. Hemoglobin (Hb) and methemoglobin (metHb) were oxidatively modified in $O{\array-\\\dot{2}}$ and $H_{2}O_{2}$ generating systems. Globin and bovine serum albumin (BSA) were also modified by iron, iron-EDTA, hematin, and Hb in an $O{\array-\\\dot{2}}$ generating system. In a $H_{2}O_{2}$ generating system, the iron- and iron-EDTA-mediated protein modifications were markedly reduced while the Hb-and hematin-mediated modifications were slightly increased. In the $O{\array-\\\dot{2}}$ generating system, the iron- and iron-EDTA-mediated protein modifications were strongly inhibited by superoxide dismutase (SOD) or catalase, but heme- and Hb-mediated protein modifications were inhibited only by catalase and slightly increased by SOD. Mannitol, 5,5-dimethyl-l-pyrroline-N-oxide (DMPO), deoxyribose, and thiourea inhibited the iron-EDTA-mediated protein modification. Mannitol and DMPO, however, did not exhibit significant inhibition in the hematin-mediated modification. Desferrioxamine (DFO) inhibited protein modification mediated by iron, but cyanide and azide did not, while the hematin-mediated protein modification was inhibited by cyanide and azide, but not significantly by DFO. The protein-modified products by iron and heme were different. ESR and UV-visible spectroscopy detected the DMPO spin adduct of the hydroxyl radical and ferryl ion generated from iron-EDTA and metHb, respectively. These results led us to conclude that the main oxidizing species are hydroxyl radical in the iron-EDTA type and the ferry I ion in the hematin type, the latter being more effective for protein modification.

  • PDF

Mechanism of Lipid Peroxidation in Meat and Meat Products -A Review

  • Min, B.;Ahn, D.U.
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.152-163
    • /
    • 2005
  • Lipid peroxidation is a primary cause of quality deterioration in meat and meat products. Free radical chain reaction is the mechanism of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the major initiators of the chain reaction. Lipid peroxyl radical and alkoxyl radical formed from the initial reactions are also capable of abstracting a hydrogen atom from lipid molecules to initiate the chain reaction and propagating the chain reaction. Much attention has been paid to the role of iron as a primary catalyst of lipid peroxidation. Especially, heme proteins such as myoglobin and hemoglobin and "free" iron have been regarded as major catalysts for initiation, and iron-oxygen complexes (ferryl and perferryl radical) are even considered as initiators of lipid peroxidation in meat and meat products. Yet, which iron type and how iron is involved in lipid peroxidation in meat are still debatable. This review is focused on the potential roles of ROS and iron as primary initiators and a major catalyst, respectively, on the development of lipid peroxidation in meat and meat products. Effects of various other factors such as meat species, muscle type, fat content, oxygen availability, cooking, storage temperature, the presence of salt that affect lipid peroxidation in meat and meat products are also discussed.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

A Study on Iron Compounds Accompanied in Korean Kaolin Minerals (국산 Kaolin 광물에 수반된 철화합물의 종류 및 존재상태 구명에 관한 연구)

  • 박금철;최석진;박영갑
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.2
    • /
    • pp.22-30
    • /
    • 1974
  • This study was carried out to investigate the species of iron compounds in kaolin mineral and the bonding relation between the major kaolin and its subordinate iron compound existing as incidental mineral in common clay by means of chemical composition, X-ray diffraction, thermal differential and thermogravimetrie analysis for the application of clays in the field of ceramic raw material. The domestic clay are produced abounduntly in many places, but San-Cheong kaolin, Chu-An clay, and Yeong-Am clay were selected as samples in this experiment because of their frequent utilization in porcelain industry. Two kinds of samples with low and high iron content are picked up respectively from the place of production and elutriated under two micron size to determine the properties and concentration of iron compound very fine particles or colloidal substance of low crystalline grade. Therefore, hydrothermal treatment in autoclave was conducted considering the existence of low crystalline grade of iron compounds known as an amorphoue state in X-ray diffraction pattern furthermore, de-iron treatment of hydrothermal compound was done in order to identify the related iron compound before and after hydrothermal reaction and iron compound which is one of the samples was synthesized for the determination of their compounds state in more detail. The obtained results in this study are as follows: In San-Cheong kaolin, Chu-An clay and Yeong-Am clay 1) It is proved that species accompanying iron compound is $\alpha$-FeOOH form. 2) Iron compound is composed of very fine particles or colloidal substance. 3) The iron substance encircles the fine parts of clay minerals under 2 micron and acts as cementizing agent.

  • PDF

Ferroptosis-Like Death in Microorganisms: A Novel Programmed Cell Death Following Lipid Peroxidation

  • Min Seok Kwun;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.992-997
    • /
    • 2023
  • Ferroptosis is a new kind of programmed cell death of which occurrence in microorganisms is not clearly verified. The elevated level of reactive oxygen species (ROS) influences cellular metabolisms through highly reactive hydroxyl radical formation under the iron-dependent Fenton reaction. Iron contributes to ROS production and acts as a cofactor for lipoxygenase to catalyze poly unsaturated fatty acid (PUFA) oxidation, exerting oxidative damage in cells. While ferroptosis is known to take place only in mammalian cells, recent studies discovered the possible ferroptosis-like death in few specific microorganisms. Capacity of integrating PUFA into intracellular membrane phospholipid has been considered as a key factor in bacterial or fungal ferroptosis-like death. Vibrio species in bacteria and Saccharomyces cerevisiae in fungi exhibited certain characteristics. Therefore, this review focus on introducing the occurrence of ferroptosis-like death in microorganisms and investigating the mode of action underlying the cells based on contribution of lipid peroxidation and iron-dependent reaction.

Application of Iron Related Magnetic Resonance Imaging in the Neurological Disorders (신경계 질환에서 철 관련 자기공명영상 기법의 활용)

  • Kim, Tae-Hyoung;Lee, Jae-Hyeok
    • Annals of Clinical Neurophysiology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Iron is an important element for brain oxygen transport, myelination, DNA synthesis and neurotransmission. However, excessive iron can generate reactive oxygen species and contribute neurotoxicity. Although brain iron deposition is the natural process with normal aging, excessive iron accumulation is also observed in various neurological disorders such as neurodegeneration with brain iron accumulation, Parkinson's disease, Alzheimer's disease, multiple sclerosis, Friedreich ataxia, and others. Magnetic resonance image (MRI) is a useful method for detecting iron deposits in the brain. It can be a powerful tool for diagnosis and monitoring, while furthering our understanding of the role of iron in the pathophysiology of a disease. In this review, we will introduce the mechanism of iron toxicity and the basics of several iron-related MRI techniques. Also, we will summarize the previous results concerning the clinical application of such MR imagings in various neurological disorders.

Salsolinol, a catechol neurotoxin, induces oxidative modification of cytochrome c

  • Kang, Jung Hoon
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.119-123
    • /
    • 2013
  • Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), an endogenous neurotoxin, is known to perform a role in the pathogenesis of Parkinson's disease (PD). In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with salsolinol. When cytochrome c was incubated with salsolinol, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in salsolinol-treated cytochrome c. Salsolinol also led to the release of iron from cytochrome c. Reactive oxygen species (ROS) scavengers and iron specific chelator inhibited the salsolinol-mediated cytochrome c modification and carbonyl compound formation. It is suggested that oxidative damage of cytochrome c by salsolinol might induce the increase of iron content in cells, subsequently leading to the deleterious condition which was observed. This mechanism may, in part, provide an explanation for the deterioration of organs under neurodegenerative disorders such as PD.

Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

  • Kang, Jung Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3295-3300
    • /
    • 2013
  • Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.