• Title/Summary/Keyword: iron removal

Search Result 445, Processing Time 0.025 seconds

The Removal Rates of the Constituents of Litters in the Littoral Grassland Ecosystems in the Lake Paldangho VI. Cu, Fe and Zn (팔당호 연안대 초지생태계에서 낙엽 구성성분의 유실률 VI. Cu, Fe 및 Zn)

  • 윤신선;이인숙;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • The investigation was performed to reveal the removal rate of metal constituents of litters in a Phragmites communis Miseanthus sacchariflorus, Typha angastata and Seirpas tabernaemontani grasslands in the lake Paldangho. The removal rates of metal constituents are determined by the mathematical models. The removal rates and time required to decay up to a percentage of each metal constituent were calculated using these model. The removal rates of Cu, Fe and Zn were 0.61, 0.58 and 0.79 in Phragmites communis 0.39, 0.47 and 0.68 in Miseanthus saccharflorus; 0.26, 0.09 and 0.23 in Typha angustata: 0.56, 0.27 and 0.67 in Seirpus tabernaemontani respectively. The periods required to reach half time to the stedy state of the removal and accumulation for Cu, Fe and Zn were 1,13,1.19 and 0.79 years in Phragmites communis; 1.79, 1.49 and 1.02 years in Miscanthus sacchariflorus; 2.70, 7.43 and 2.96 years in Typha angustata ; 1.23, 2.58 and 1.04 years in Scirqus tabernaemontani, re-spectively. Key words: Phragmites communis, Miscanthus sacchariflorus, Typha angustata and Scirpus tabernaemontani, lake Paldangho, Removal rate, Cupper, Iron, Zinc.

  • PDF

Hybrid Barriers of Iron and Modified-bentonite for the Remediation of Multi-contaminated Water (복합오염물질 제거를 위한 철과 개량 벤토나이트의 복합층에 관한 연구)

  • Cho, Hyun-Hee;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.512-519
    • /
    • 2004
  • Hybrid barriers using reduction and immobilization were tested to remediate the groundwater contaminated with multi-pollutants in this study. Iron filings and HDTMA(hexadecyltrimethylammonium)-bentonite were simulated in columns to assess the performance of hybrid barriers for remediation of trichloroethylene(TCE)-contaminated water. TCE reduction rate for the mixture of iron filings and HDTMA-bentonite was about 7 times higher than that for iron filings, only suggesting the reduction of TCE was accelerated when HDTMA-bentonite was mixed with iron filings. TCE reduction rate for the two layers of iron and HDTMA-bentonite was nearly similar to that for iron filings alone, but the partition coefficient($K_d$) for the two layers was 4.5 times higher than for that iron filings only. TCE was immobilized in the first layer with HDTMA-bentonite, and then dechlorinated in the second layer with iron filings. HDTMA-bentonite may contribute to the increase in TCE concentration on iron surface so that more TCE can be reduced. Also, TCE removal in the hybrid barriers was not affected by chromate and naphthalene while the reduction rate of TCE with the co-existing contaminants by iron filings was significantly decreased. Significant TCE removal in this research indicates that the proposed hybrid barrier system has the potential to become the effective remediation alternative during the occurrence of oil shock. Also, if subsurface environments are contaminated with multi-pollutants that contain non-reducible compounds as well as reducible compounds such as TCE, the conventional reactive barriers cannot be applied to this subsurface environment, while the proposed hybrid system can be applied successfully.

Experimental investigation of organic fouling mitigation in membrane filtration and removal by magnetic iron oxide particles

  • Jung, Jaehyun;Sibag, Mark;Shind, Bora;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.223-229
    • /
    • 2020
  • Here magnetic iron oxide particles (MIOPs) were synthesized under atmospheric air and which size was controlled by regulating the flow rate of alkali addition and used for efficient removal of bovine serum albumin (BSA) from water. The MIOPs were characterized using field-emission scanning electron microscopy (FE-SEM), Fourier transformation-Infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The results revealed a successful preparation of the MIOPs. The removal efficiency for BSA using MIOPs was found to be about 100% at lower concentrations (≥ 10 mg/L). The maximum adsorption of 64.7 mg/g for BSA was achieved as per the Langmuir adsorption model. In addition, microfiltration membrane for removal of BSA as model protein organic foulant is also studied. The effect of various MIOPs adsorbent sizes of 210, 680 and 1130 nm on the absorption capacity of BSA was investigated. Water permeability of the BSA integrated with the smallest size MIOPs membrane was increased by approximately 22% compared by the neat BSA membrane during dead-end filtration. Furthermore, the presence of small size MIOPs were also effective in increasing the permeate flux.

Development of a Zero Discharge and Reuse System for Rural Areas (농촌지역을 위한 무방류 재이용시스템 개발)

  • Hong, Min;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.91-96
    • /
    • 2009
  • This study describes a zero discharge and reuse system developed for rural areas. The purpose of the system is decontamination of used irrigation water for down-stream usage and reuse of wastewater in rural villages for preventing water shortage problem expected to happen in near future. The system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes. The main feature of the system is to remove phosphorous by using Fe-ionizing module. Indoor experiments were undertaken with a trial product of the system to test its performance. The removal capacities of T-P, T-N, and BOD were examined. Also the proper time for the replacement of iron plate module was tested as well as the efficiency of T-P removal rate based on the usage of an automatic washing system for the iron plate. As results, the system showed very good water purification performances through obtaining the results of over 90% removal rates from T-P, BOD, and 67% from T-N. The proper time period for replacement of iron plate was maximum 2 years, and also efficiency of T-P removal rate found to be greatly influenced by the usage of an automatic washing system from the test.

Oxalic Acid-based Remediation of Arsenic-contaminated Soil (옥살산 기반의 비소오염토양 정화 연구)

  • Lee, Myeong Eun;Jeon, Eun-Ki;Kim, Jong-Gook;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Arsenic (As) usually is bound to amorphous iron oxides in the soils, and it can be removed via dissolution of iron oxides. Inorganic acid and chelating agent are widely used to extract As in the soil washing. However, the overall performance is highly dependent on the state of As fractionation. In this study, oxalic acid and inorganic acids (HCl, $H_2SO_4$, and $H_3PO_4$) were applied to enhance the dissolution of iron oxides for remediation of As-contaminated soils. Oxalic acid was most effective to extract As from soils and removal of As was two times greater than other inorganic acids. Additionally, 75% of As bound to amorphous iron oxides was removed by 0.2 M oxalic acid. Arsenic removal by oxalic acid was directly proportional to the sum of labile fractions of As instead of the total concentration of As. Therefore, the oxalic acid could extract most As bound to amorphous iron oxides.

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

  • Gunawardana, Buddhika;Singhal, Naresh;Swedlund, Peter
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.187-203
    • /
    • 2011
  • Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Iron Removal from Neodymium Chloride Solution with Alamine 336 (Alamine 336을 이용한 염화네오디뮴 수용액으로부터 Fe 제거)

  • Eom, Hyoung-Choon;Lee, Jin Young;Kim, Chul-Joo;Sohn, Jung-Soo;Yoon, Ho-Sung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.512-515
    • /
    • 2008
  • The removal of iron from neodymium chloride solution was carried out by solvent extraction using Alamine 336 in kerosine. The effect of Alamine 336, hydrochloric acid and chloride ion concentrations on the extraction of Fe were studied. The results showed that Alamine 336 as an extractant for removal of iron was effective and the extraction percentage of iron was increased with increasing hydrochloric acid and chloride ion concentration in aqueous solution. The extraction of 99% of iron is attained at a ratio of A/O = 4 by distilled water. The stripping yield of iron from loaded Alamine 336 decreased with decreasing hydrochloric acid concentration in stripping solution.