• 제목/요약/키워드: iron ore sintering bed

검색결과 18건 처리시간 0.023초

소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구 (A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed)

  • 양원;양광혁;최상민;최응수;이덕원;김성만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.141-148
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a few basic analysis and thermo-gravimetric analysis. It was found that coke has a higher reactivity than anthracite due to the difference of surface area and density. Those characteristics are reflected to the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion, which implies the further investigation should be performed for obtaining optimal combustion conditions in the sintering bed.

  • PDF

소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구 (A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed)

  • 양원;양광혁;최응수;이덕원;김성만;최상민
    • 한국연소학회지
    • /
    • 제9권2호
    • /
    • pp.30-37
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal - coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a set of basic analysis and thermo-gravimetric analysis. Coke has a higher reactivity than anthracite due to the difference of surface area and density, and these characteristics are reflected in the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion.

  • PDF

제철 소결공정에 대한 단입자 연소 모델의 응용 (Application of Intra-particle Combustion Model for Iron Ore Sintering Bed)

  • 양원;최상민;진홍종
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.181-188
    • /
    • 2006
  • Operation parameters for large scale industrial facility such as iron making plant are carefully selected through elaborate tests and monitoring rather than through a mathematical modeling. One of the recent progresses for better energy utilization in iron ore sintering process is the distribution pattern of fuel inside a macro particle which is formed with fines of iron ore, coke and limestone. Results of model tests which have been used as a basis for the improved operation in the field are introduced and a theoretical modeling study is presented to supplement the experiment-based approach with fundamental arguments of physical modeling, which enables predictive computation beyond the limited region of tests and adjustment. A single fuel particle model along with one-dimensional bed combustion model of solid particles are utilized, and thermal processes of combustion and heat transfer are found to be dominant consideration in the discussions of productivity and energy utilization in the sintering process.

  • PDF

제철 소결기 베드 내 연소 및 열전달 모델링 (Modeling of Combustion and Heat Transfer in the Iron Ore Sintering Bed)

  • 양원;류창국;최상민
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.23-31
    • /
    • 2002
  • Processes in an iron ore sintering bed can characterized as a relatively uniform progress of fuel, cokes combustion and complicated physical change of solid particles. The sintering bed was modelled as an unsteady one-dimensional progress of the fuel layer, containing two phases: solid and gas. Coke added to the raw mix, of which the amount is about 3.5% of the total weight, was assumed to form a single particle with other components. Numerical simulations of the condition in the iron ore sintering bed were performed for various parameters: moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results showed that the influence of these parameters on the bed condition should be carefully evaluated, in order to achieve self-sustaining combustion without high temperature section. The model should be extended to consider the bed structural change and multiple solid phase, which could treat the inerts and fuel particles separately.

  • PDF

제철 소결기 배드 내 연소 및 열전달 모델링;인자 변화에 의한 계산 결과 평가 (Modeling of Combustion and Heat transfer in the Iron Ore Sintering Bed;Evaluation of the Calculation Results for Various Cases)

  • 양원;류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.171-178
    • /
    • 2002
  • Numerical simulations of the condition in the iron ore sintering bed are performed for various parameters. The sintering bed is modelled as an unsteady one-dimensional progress of solid material, containing cokes and iron ore. Bed temperature, solid mass and gas species distributions are predicted for various parameters of moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results show that influences of these parameters on the bed condition should be carefully evaluated for achievement of the self-sustaining combustion without the high temperature section, which can cause the excessive melting in the bed. It suggests that the model should be extended to consider the bed structural change and multiple solid phase, which can treat the inerts and fuel particles separately.

  • PDF

제철 소결공정의 철광석-코크스 베드에서의 연소와 열전달 해석 (Prediction of Combustion and Heat Transfer in the Sintering Bed of Iron Ore)

  • 양원;류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.161-168
    • /
    • 2001
  • Sintering bed of iron ore in the steel making process is one of typical applications of solid fuel bed, which has relatively uniform progress of fuel and simple processes of combustion. The sintering bed was modelled as an unsteady one-dimensional progress of fuel layer containing the two phases of solid and gas. Cokes added to the raw mix of which the amount is about 3.5% of the total weight was assumed to form a single particle with other components. In the early predition results presented in this paper, the flame propagation within the bed was not sustained after the top surface of the bed was ignited with hot gas. It suggests that the model should be extended to consider the multiple solid phase, which can treat the ore particles and the coke particles separately.

  • PDF

소결층 내 코크스/무연탄 연소 특성의 정량적 평가 (A Quantitative Evaluation of Combustion Characteristics of Coke/Anthracite in an Iron Ore Sintering Bed)

  • 양원;양광혁;최상민;최응수;이덕원;김성만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.33-40
    • /
    • 2004
  • Combustion of coke/anthracite in an iron ore sintering bed is characterized quantitatively by introducing newly defined parameters related to propagation and thickness of combustion zone and maximum temperature. The parameters are obtained by sintering pot experiment and I-D, unsteady numerical model which treats solid material as multiple solid phases. Experiments and calculations are performed for various major operating parameters: air inlet velocity, different type of fuels which have different reactivity and diameter of the solid fuel. Effects of the operating parameters on the productivity and quality of the sintering process are investigated and evaluated quantitatively and the results show that optimized air supply rate and diameter of anthracite for replacement of coke can be obtained. This approach can be applied to other kinds of combustors for characterization of the combustion in the solid fuel beds.

  • PDF

다중 고체상을 고려한 소결기의 코크스 연소-열전달 모델링 (Modeling of Coke Combustion and Heat Transfer in an Iron Ore Sintering Bed with Considerations of Multiple Solid Phases)

  • 양원;류창국;최상민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.79-84
    • /
    • 2003
  • In this study we propose an unsteady I-dimensional model of an iron ore sintering bed with multiple solid phases, which confers a phase on each solid material. This model contains coke combustion, limestone decomposition, gaseous reaction, heat transfers between each phase, and geometric changes of the solid particles. Simulation results are compared with the limited experimental data set of various coke contents and air supply rates. Effect of the coke diameter is also evaluated. They predict the experimental results well and show applicabilities to the various system of the fuel bed with various solid materials.

  • PDF

배가스 재순환 적용을 위한 제철 소결 베드 프로세스 모델링 (Process Modeling of an Iron Ore Sintering Bed for Flue Gas Recirculation)

  • 안형준;최상민;조병국
    • 한국연소학회지
    • /
    • 제16권4호
    • /
    • pp.23-30
    • /
    • 2011
  • In the iron and steel manufacturing, sintering process precedes blast furnace to prepare feed materials by agglomerating powdered iron ore to form larger particles. There are several techniques which have devised to improve sintering production and productivity including flue gas recirculation(FGR) and additive gas enriched operation. The application of those techniques incurs variations of process configurations as well as inlet and outlet gas conditions such as temperature, composition, and flow rate which exert direct influence on reactions in the bed or the operation of the entire plant. In this study, an approach of sintering bed modeling using flowsheet process simulator was devised in consideration of FGR and the change of incoming and outgoing gas conditions. Results of modeling for both normal and FGR sintering process were compared in terms of outgoing gas temperature, concentration, and moisture distribution pattern as well as incoming gas conditions. It is expected to expand the model for various process configurations with FGR, which may provide the usefulness for design and operation of sintering plant with FGR.

고체 입자 베드 내 반응 환경 변화를 위한 모델링 접근 방법 (Modeling Approach of Solid Particle Bed for the Combustion Environment Control)

  • 안형준;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.21-23
    • /
    • 2013
  • Various solid particle materials are treated in the industrial processes including fixed-beds or moving grate beds, and modeling approaches have been widely applied to the processes to predict and evaluate their performance. For this study, the modeling approach was applied to iron ore sintering process with various improvement measures. Based on the previous modeling approach, the changes and effects of the improvement measures were discussed at the point of controlling the combustion environment in the bed.

  • PDF