• Title/Summary/Keyword: iron furnace

Search Result 188, Processing Time 0.023 seconds

Blast Furnace Slag as Media for an Anaerobic Fixed-Film Process (고로(高爐) 슬래그를 이용한 혐기성(嫌氣性) 생물막(生物膜) 공법(工法)에 관한 연구(硏究))

  • Choi, Eui So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.135-141
    • /
    • 1989
  • Blast furnace slag presents coarse surface for microbes to grow on and high calcium and magnesium contents to neutralize acid to be produced during anaerobic digestion. Also, slag contains aluminum and iron oxides which would promote biological flocculation, and minerals which would stimulate microbial growth. Acid wastes like dairy waste, carbohydrate waste, sanitary landfill leachate and molases wastes were applied without neutralization to laboratory reactors to examine the applicability of blast furnace slag as media. The study results indicated slag media was effective to neutralize pH and maintain microbial population in the system. Particularly, COD removal efficiency was greater than those from plastic media operations treating dairy waste at higher loading rates.

  • PDF

CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM (다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성)

  • Park, G.M.;Lee, D.J.;Lee, J.H.;Yoon, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.

Radiation Shielding Property of Concrete Using the Rapidly Cooled Steel Slag from Oxidizing Process in the Converter Furnace as Fine Aggregate

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.478-489
    • /
    • 2012
  • Each year, about four million tons of steel slag, a by-product produced during the manufacture of steel by refining pig iron in the converter furnace, is generated. It is difficult to recycle this steel slag as aggregate for concrete because the reaction with water and free-CaO in steel slag results in a volume expansion that leads to cracking. However, the steel slag used in this study is atomized using an air-jet method, which rapidly changes the melting substance at high temperature into a solid at a room temperature and prevents free-CaO from being generated in steel slag. This rapidly-cooled steel slag has a spherical shape and is even heavier than natural aggregate, making it suitable for the aggregate of radiation shielding concrete. This study deals with the radiation shielding property of concrete that uses the rapidly-cooled steel slag from the oxidizing process in the converter furnace as fine aggregate. It was shown that the radiation shielding performance of concrete mixed with rapidly-cooled steel slag is even more superior than that of ordinary concrete.

Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-A review

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.283-303
    • /
    • 2016
  • Several types of industrial byproducts are generated. With increased environmental awareness and its potential hazardous effects, the utilization of industrial byproducts in concrete has become an attractive alternative to their disposal. One such by-product is ground granulated blast furnace slag (GGBS), which is a byproduct of the smelting process carried out in the iron and steel industry. The GGBS is very effective in the design and development of high-strength and high-performance concrete. This paper reviews the effect of GGBS on the workability, porosity, compressive strength, splitting tensile strength, and flexural strength of concrete.

Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob;Lee, Han Seung;Kwon, Seung Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

Experimental Study on Particle Temperature and CO/CO2 Emission Characteristics of Pulverized Coal Combustion Condition According to Coal Types in Blast Furnace (고로 내 미분탄 연소조건에서 탄종에 따른 입자온도와 CO/CO2 배출 특성에 관한 연구)

  • Cho, Young Jae;Kim, Jin Ho;Kim, Ryang Gyun;Kim, Gyu Bo;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.807-815
    • /
    • 2014
  • This study was performed using a laminar flow reactor that could replicate the combustion environment of pulverized coal in a blast furnace. Since a pulverized coal injection system was developed for iron making, the combustion characteristics of pulverized coal have been important in the iron and steel industry. The flame structure, particle temperature, and exhaust gas were investigated for different types of coal. The results of this study demonstrated that the combustion characteristics of coal are influenced by several properties of individual coals. In particular, the CO emission and volatile matter content of individual coals were found to have a strong influence on their combustion characteristics. Thus, this study found the properties of the coals to be significant and focused on the particle temperature and CO and $CO_2$ emissions.

A Study of the Iron Production Process through the Analysis of Slags Excavated from Bupyeong-ri, Inje, Korea (인제 부평리유적 출토 슬래그 분석을 통한 제철 과정 연구)

  • Bae, Chae Rin;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.143-151
    • /
    • 2020
  • In the present article, we have analyzed five slags excavated from the Unified Silla period iron smelting site, i.e., location 4-2 of the Inje Bupyeong-ri site, to investigate the iron smelting process. The total Fe content of the slag excavated from the Inje Bupyeong-ri site ranged between 3.65 and 23.78 wt%, lower than that of typical slag, and deoxidation agent of the slag ranged between 65.92 and 88.96 wt%, higher than that of typical slag. These results suggest that the recovery rate of iron was significantly high. Furthermore, cristobalite was detected in most of the samples, and the furnace temperature, estimated by substituting the analyzed data into the FAS and FCS state diagrams, was confirmed as 1,600℃ or more. These results suggest that the operation at the Inje Bupyeong-ri site was performed at a temperature capable of producing cast iron by completely melting the carbon-containing iron. Observation of the microstructure showed that the iron fragments excavated at the Inje Bupyeong-ri site were identified as white cast iron. Steadite from the ternary iron-carbon-phosphorus system was observed in the white cast iron structure. These results show that indirect smelting was performed when the iron smelting by-products were produced. Based on the analysis results, it was confirmed that the Inje Bupyeong-ri site was the indirect smelting site in the Unified Silla period.

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag (영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가)

  • Lim, Jung-Eun;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.631-638
    • /
    • 2010
  • The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

Industrial Solids Processing Applications - Particle Reaction Models and Bed Reactor Models (산업용 고체 처리 공정 - 입자 반응 및 고정층 반응기 모델링)

  • Ahn, Hyungjun;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.27-35
    • /
    • 2017
  • This paper reviews the previous industrial solid bed process simulations to provide a better understanding of the modeling approaches to the particle reactions in the bed. Previous modeling studies on waste incinerator, iron ore sintering bed, blast furnace, iron ore pellet indurator, and biomass combustor can be seen on the common ground of unsteady 1-D modeling scheme. Approaches to the particle reaction modeling have been discussed in terms of the status of solid particles in the bed, types of reaction progression in a particle, and the consideration of the intra-particle temperature gradient.

Fuzzy Weighing Technology for Alloy Iron of Electric Arc Furnace (전기로 합금철 퍼지 계량 제어)

  • Lee, Gi-Beom;Heo, Jeong-Heon;Ju, Mun-Gap
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.296-299
    • /
    • 2007
  • 본 논문에서는 전기로 합금철 투입 중량을 보다 정밀하게 제어하기 위하여 퍼지 함수를 사용한 제어 기법을 적용하였다. 합금철 중량 제어에 사용된 퍼지 제어는 기존 단순 패턴 제어에 비하여 합금철 계량 정밀도를 높였으며, 합금철 계량 시간을 크게 단축시켰다. 한편 퍼지 제어 함수는 제어수식을 일반화시켜서 Programmable Logic Controller (PLC)의 래더 프로그램으로 구현하였다.

  • PDF