• Title/Summary/Keyword: iron -based superconductor

Search Result 13, Processing Time 0.019 seconds

The Field Coil End Effect of HTS Synchronous Motor (고온초전도 동기모터의 계자코일 단부의 영향)

  • 백승규;권운식;손명환;이언용;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.276-279
    • /
    • 2003
  • The superconducting synchronous machine(S.S.M) including generator and motor has different electromagnetic structure from the conventional machine. With the help of superconductor having much higher operating current density than normal conductor, S.S.M can eliminate most of iron core filling inside of the conventional machine. This air-cored structure could be analysed and designed theoretically based on 2-dimensional(2-D) magnetic field distribution assuming that the windings are extended infinitely toward the axial direction. However the actual structure of S.S.M has the end regions interconnecting the straight parts of the same cross-section with the 2-D model. Therefore, this actual 3-D model has smaller field distribution than the 2-D model. In this paper, we consider the effect of the end regions on the output of a HTS model motor and suggest more accurate design approach through comparison of 2-D and 3-D magnetic field analysis.

  • PDF

3-D field distribution effect on HTS synchronous motor (고온초전도 동기모터의 3차원 자장 분포 영향)

  • Baik, S.K.;Sohn, M.H.;Lee, E.Y.;Kwon, W.S.;Jo, Y.S.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.768-770
    • /
    • 2003
  • A superconducting synchronous motor has different electromagnetic structure from the conventional machine. With the help of superconductor having much higher operating current density than normal conductor, superconducting motor can eliminate most of iron core filled inside of the conventional machine. This air-cored structure could be analysed and designed theoretically based on 2-dimensional(2-D) magnetic field distribution assuming that the windings are extended infinitely toward the axial direction. However, the actual structure of superconducting motor has the end regions interconnecting the straight parts of the same cross-section with the 2-D model. Therefore, this actual 3-D model has smaller field distribution than the 2-D model. In this paper, we consider the effect of the end regions on the output of a HTS model motor and suggest more accurate design approach through comparison of 2-D and 3-D magnetic field analysis results.

  • PDF