Temperature Dependence of Upper Critical Field and Its Anisotropy Ratio of SmFeAsO_{0.85} and SmFeAsO_{0.8}F_{0.2} Single Crystals

Hyun-Sook Lee^a, Jae-Hyun Park^a, Jae-Yeap Lee^a, Ju-Young Kim^b, Marek Bartkowiak^c, Jun Sung Kim^a, B. K. Cho^b, Chang-Uk Jung^d, and Hu-Jong Lee^a

^a Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea

^b Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea

^c Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany

^d Department of Physics, Hankuk University of Foreign Studies, Yongin, Gyeonggi 449-791, Republic of Korea

We investigated temperature dependence of upper critical fields ($H_{c2}(T)$) and its anisotropy of F-free SmFeAsO_{0.85} and F-doped SmFeAsO_{0.8}F_{0.2} single crystals, grown at high pressure with a nominal composition, by measuring resistive transition in static and pulsed magnetic fields up to 7 T and 60 T, respectively. $H_{c2}(T)$ for the field parallel to c-axis ($H_{c2//c}(T)$) and *ab*-plane ($H_{c2//ab}(T)$) obtained in both single crystals exhibited the behavior similar to those of AEFe₂As₂ (AE=alkali earth) series, i.e., a linear increase of $H_{c2//ab}(T)$ and a sublinear increase of $H_{c2//ab}(T)$ with decreasing temperature below the superconducting transition, which is in contrast to the result reported in NdFeAsO_{1-x}F_x single crystals. Fermi-surface topology as well as paramagnetic pair-breaking effect is responsible for the field-orientation-dependent behavior of $H_{c2}(T)$. In addition, anisotropy ratio of $\gamma(T) = H_{c2//ab}/H_{c2//c}(T)$ tells the existence of a multi-band nature.

Keywords: FeAs-based superconductor, Iron pnictides single crystal, Upper critical field, Anisotropy