• Title/Summary/Keyword: ionospheric delay anomaly

Search Result 6, Processing Time 0.027 seconds

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

Based on Multiple Reference Stations Ionospheric Anomaly Monitoring Algorithm on Consistency of Local Ionosphere (협역 전리층의 일관성을 이용한 다중 기준국 기반 전리층 이상 현상 감시 기법)

  • Song, Choongwon;Jang, JinHyeok;Sung, Sangkyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.550-557
    • /
    • 2017
  • Ionospheric delay, which affect the accuracy of GNSS positioning, is generated by electrons in Ionosphere. Solar activity level, region and time could make change of this delay level. Dual frequency receiver could effectively eliminate the delay using difference of refractive index between L1 to L2 frequency. But, Single frequency receiver have to use limited correction such as ionospheric model in standalone GNSS or PRC(pseudorange correction) in Differential GNSS. Generally, these corrections is effective in normal condition. but, they might be useless, when TEC(total electron content) extremely increase in local area. In this paper, monitoring algorithm is proposed for local ionospheric anomaly using multiple reference stations. For verification, the algorithm was performed with specific measurement data in Ionospheric storm day (20. Nov. 2003). this algorithm would detect local ionospheric anomaly and improve reliability of ionospheric corrections for standalone receiver.

MEASUREMENT AND SIMULATION OF EQUATORIAL IONOSPHERIC PLASMA BUBBLES TO ASSESS THEIR IMPACT ON GNSS PERFORMANCE

  • Tsujii, Toshiaki;Fujiwara, Takeshi;Kubota, Tetsunari;Satirapod, Chalermchon;Supnithi, Pornchai;Tsugawa, Takuya;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.607-613
    • /
    • 2012
  • Ionospheric anomaly is one of the major error sources which deteriorate the GNSS performance. In the equatorial region, effects of the ionospheric plasma bubbles are of great interest because they are pretty common phenomena, especially in the period of the high solar activity. In order to evaluate the GNSS performance under circumstance of the bubbles, an ionospheric scintillation monitor has been developed and installed in Bangkok, Thailand. Furthermore, a model simulating the ionospheric delay and scintillation due to the bubbles has been developed. Based on these developments, the effects of the simulated plasma bubbles are analyzed and their agreement with the real observation is demonstrated. An availability degradation of the GPS ground based augmentation system (GBAS) caused by the bubbles is exampled in details. Finally, an integrated GPS/INS approach based on the Doppler frequency is proposed to remedy the deterioration.

Data Quality Analysis of Korean GPS Reference Stations Using Comprehensive Quality Check Algorithm (종합적 품질평가 기법을 이용한 국내 GPS 상시관측소의 데이터 품질 분석)

  • Kim, Minchan;Lee, Jiyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.689-699
    • /
    • 2013
  • During extreme ionospheric storms, anomalous ionospheric delays and gradients could cause potential integrity threats to users of GNSS (Global Navigation Satellite System) augmentation systems. GNSS augmentation ground facilities must monitor these ionospheric anomalies defined by a threat model and alarm the users of safely-of-life applications within time-to-alerts. Because the ionospheric anomaly threat model is developed using data collected from GNSS reference stations, the use of poor-quality data can degrade the performance of the threat model. As the total number of stations increases, the number of station with poor GNSS data quality also increases. This paper analyzes the quality of data collected from Korean GPS reference stations using comprehensive GNSS data quality check algorithms. The results show that the range of good and poor qualities varies noticeably for each quality parameter. Especially erroneous ionospheric delay and gradients estimates are produced due to poor quality data. The results obtained in this study should be a basis for determining GPS data quality criteria in the development of ionospheric threat models.

Analysis on Normal Ionospheric Trend and Detection of Ionospheric Disturbance by Earthquake (정상상황 전리층 경향 분석 및 지진에 의한 전리층 교란검출)

  • Kang, Seonho;Song, Junesol;Kim, O-jong;Kee, Changdon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • As the energy generated by earthquake, tsunami, etc. propagates through the air and disturbs the electron density in the ionosphere, the perturbation can be detected by analyzing the ionospheric delay in satellite signal. The electron density in the ionosphere is affected by various factors such as solar activity, latitude, season, and local time. To distinguish from the anomaly, therefore, it is required to inspect the normal trend of the ionosphere. Also, as the perturbation magnitude diminishes by distance it is necessary to develop an appropriate algorithm to detect long-distance disturbances. In this paper, normal condition ionosphere trend is analyzed via IONEX data. We selected monitoring value that has no tendency and developed an algorithm to effectively detect the long-distance ionospheric disturbances by using the lasting characteristics of the disturbances. In the end, we concluded the $2^{nd}$ derivative of ionospheric delay would be proper monitoring value, and the false alarm with the developed algorithm turned out to be 1.4e-6 level. It was applied to 2011 Tohoku earthquake case and the ionospheric disturbance was successfully detected.

Ionospheric peak parameter foF2 and its variation trend observed by GPS

  • Jin, Shuanggen;Park, Jong-Uk;Park, Pil-Ho;Choi, Byung-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.181-184
    • /
    • 2006
  • Knowledge of the ionospheric peak parameter foF2 (the critical frequency of F2 layer) is one of key essential factors for predicting ionospheric characteristics and delay correction of satellite positioning. However, the foF2 was almost estimated using an empirical model of International Reference Ionosphere (IRI) or other expensive observing techniques, such as ionosondes and scatter radar. In this paper, the ionospheric peak parameter foF2 is the first observed by ground-based GPS with all weather, low-cost and near real time properties. Compared with the IRI-2001 and independent ionosondes at or near the GPS receiver stations, the foF2 obtained from ground-based GPS is in better agreement, but closer to the ionosonde. However, during nighttime, the IRI model overestimated the GPS observed values during winter and equinox months.Furthermore, seasonal variation trend of the foF2 in 2003 is studied using foF2 monthly median hourly data measured over South Korea. It has shown that the systematic diurnal changes of foF2 are apparent in each season and the higher values of foF2 are observed during the equinoxes (semiannual anomaly) as well as in mid-daytime of each season.

  • PDF