• Title/Summary/Keyword: ionospheric F2 layer

Search Result 16, Processing Time 0.027 seconds

Ionospheric F2-layer Perturbations Observed After the M8.8 Chile Earthquake on February 27, 2010, at Long Distance from the Epicenter

  • Hegai, Valery V.;Kim, Vitaly P.;Legen'ka, Anna D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The F2-layer critical frequency (foF2) data from several ionosondes are employed to study the long-distance effect of the M8.8 Chile Earthquake of February 27, 2010, on the F2 layer. Significant perturbations of the peak F2-layer electron density have been observed following the earthquake at two South African stations, Hermanus and Madimbo, which are located at great circle distances of ~8,000 and ~10,000 km from the earthquake epicenter, respectively. Simplified estimates demonstrate that the observed ionospheric perturbations can be caused by a long-period acoustic gravity wave produced in the F-region by the earthquake.

Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho;Park, Young-Deuk;Cho, Il-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002) than low solar activity (2006-2008). It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF) Bs (IMF Bz <0) component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

Ionospheric F2-Layer Variability in Mid Latitude Observed by Anyang Ionosonde

  • Kwak, Young-Sil;Kumar, Phani;Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Khan-Hyuk;Hong, Sun-Hak
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.38.2-38.2
    • /
    • 2009
  • The ionosphere displays variations on a wide variety of time-scales, ranging from few hours to days and up to solar cycles and even more. In this paper, we examine the ionospheric F2-layer variability in mid latitude by analyzing the foF2 and hmF2 from the Anyang ionosonde. Especially, we investigate how ionospheric semi-annual and seasonal anomalies vary with local time and solar activity. In addition to the characterization of the ionospheric semi-annual an seasonal anomalies, our study extends to the investigation of the relationship between ionospheric variability and geomagnetic activity. Finally we also discuss the coupling between ionospheric F2-layer variability and thermospheric neutral composition.

  • PDF

Effectiveness Criteria for Methods of Identifying Ionospheric Earthquake Precursors by Parameters of a Sporadic E Layer and Regular F2 Layer

  • Korsunova, Lidiya P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.137-140
    • /
    • 2015
  • The results of the study of ionospheric variations in the summer months of 1998-2002 at an ionospheric station of vertical sounding "Petropavlovsk-Kamchatsky" are presented. Anomalous variations of virtual sporadic-E height (h'Es), Es blanketing frequency (fbEs), and the critical frequency of the ionospheric F2 layer (foF2) (which can be attributed to the possible earthquake precursors) are selected. The high efficiency of the selection of ionospheric earthquake precursors based on the several parameters of Es and F2 layers is shown. The empirical dependence, which reflects the connection between the lead-time of the earthquake moment, the distance to the epicenter from the observation point, and the magnitude of the earthquake are obtained. This empirical dependence is consistent with the results of the detection of earthquake precursors by measuring the physical parameters of the Earth's crust in the same region.

Response of the Midlatitude F2 Layer to Some Strong Geomagnetic Storms during Solar Minimum as Observed at Four Sites of the Globe

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • In this study, we documented the midlatitude F2-layer response to five strong geomagnetic storms with minimum Dst < -150 nT that occurred in solar minimum years using hourly values of the F2-layer critical frequency (foF2) from four ionosondes located in different hemispheres. The results were very limited, but they illustrated some peculiarities in the behavior of the F2-layer storm. During equinox, the characteristic ionospheric disturbance patterns over the Japanese station Wakkanai in the Northern Hemisphere and the Australian station Mundaring in the Southern Hemisphere were consistent with the well-known scenario by $Pr{\ddot{o}}lss$ (1993); however, during a December solstice magnetic storm, both stations did not observe any noticeable positive ionospheric disturbances. Over the "near-pole" European ionosonde, clear positive ionospheric storms were not observed during the events, but the "far-from-pole" Southern Hemisphere station Port Stanley showed prominent enhancements in F2-layer peak electron density in all magnetic storms except one. No event produced noticeable nighttime enhancements in foF2 over all four ionosondes.

Research on Ionospheric Variations Associated with Solar Activity Covering One Complete Solar Cycle (1991-2002) in Korea

  • Lee, Sang-U;Kim, Jeong-Hun;Kim, Yu-Seon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.36-36
    • /
    • 2004
  • Ionospheric data from DGS-256 ionosonde operated by Radio Research Laboratory in Anyang archived during 1991-2002 was extracted and analyzed firstly in Korea. Daily, monthly and annual variations of the 12-year F2 layer critical frequency(foF2) are derived to investigate the statistical ionospheric characteristics during one complete solar cycle. Positive correlation between the mean values of 24-hourly monthly median foF2 and the monthly smoothed sunspot number(SSN) for the same period is found. (omitted)

  • PDF

The height variation of F2 peak density using Anyang Ionosonde measurements for GNSS ionospheric model

  • Kim, Eo-Jin;Chung, Jong-Kyun;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.3-24.3
    • /
    • 2008
  • The signals transmitted from satellites of Global Navigation Satellite System (GNSS) interact with the plasma of the ionosphere. To study the impact of the ionospheric plasma on GNSS applications a comprehensive knowledge of the ionosphere is required. Especially the correct measurement of the ionosphere such as the peak height of the F2 layer peak electron density (hmF2) is important for the GNSS ionospheric model. Anyang ionosonde station ($37.39^{\circ}N$, $126.95^{\circ}E$) has been operating from October 2000 and the accumulated data for 8 years may allow us to obtain climatological characteristics of middle latitude ionospheric F region for GNSS application. We analyzed the variations of the hmF2 and NmF2 over Anyang station for different conditions of solar activity, geomagnetic activity, season, and local time, and we compared our results with the IRI model.

  • PDF

Ionospheric peak parameter foF2 and its variation trend observed by GPS

  • Jin, Shuanggen;Park, Jong-Uk;Park, Pil-Ho;Choi, Byung-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.181-184
    • /
    • 2006
  • Knowledge of the ionospheric peak parameter foF2 (the critical frequency of F2 layer) is one of key essential factors for predicting ionospheric characteristics and delay correction of satellite positioning. However, the foF2 was almost estimated using an empirical model of International Reference Ionosphere (IRI) or other expensive observing techniques, such as ionosondes and scatter radar. In this paper, the ionospheric peak parameter foF2 is the first observed by ground-based GPS with all weather, low-cost and near real time properties. Compared with the IRI-2001 and independent ionosondes at or near the GPS receiver stations, the foF2 obtained from ground-based GPS is in better agreement, but closer to the ionosonde. However, during nighttime, the IRI model overestimated the GPS observed values during winter and equinox months.Furthermore, seasonal variation trend of the foF2 in 2003 is studied using foF2 monthly median hourly data measured over South Korea. It has shown that the systematic diurnal changes of foF2 are apparent in each season and the higher values of foF2 are observed during the equinoxes (semiannual anomaly) as well as in mid-daytime of each season.

  • PDF

Seasonal and Latitudinal Variations of the F2-Layer during Magnetic Storms

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.231-239
    • /
    • 2013
  • To identify seasonal and latitudinal variations of F2 layer during magnetic storm, we examine the change of daily averages of foF2 observed at Kokubunji and Hobart during high (2000~2002) and low (2006~2008) solar activity intervals. It is found that geomagnetic activity has a different effect on the ionospheric F2-layer electron density variation for different seasons and different latitudes. We, thus, investigate how the change of geomagnetic activity affects the ionospheric F2-layer electron density with season and latitude. For this purpose, two magnetic storms occurred in equinox (31 March 2001) and solstice (20 November 2003) seasons are selected. Then we investigate foF2, which are observed at Kokubunji, Townsville, Brisbane, Canberra and Hobart, Dst index, Ap index, and AE index for the two magnetic storm periods. These observatories have similar geomagnetic longitude, but have different latitude. Furthermore, we investigate the relation between the foF2 and the [O]/[$N_2$] ratio and TEC variations during 19-22 November 2003 magnetic storm period. As a result, we find that the latitudinal variations of [O]/[$N_2$] ratio and TEC are closely related with the latitudinal variation of foF2. Therefore, we conclude that the seasonal and latitudinal variations of foF2 during magnetic storm are caused by the seasonal and latitudinal variations of mean meridional circulation of the thermosphere, particularly upwelling and downwelling of neutral atmosphere during magnetic storm.

On the Variability of the Ionospheric F2-Layer During the Quietest Days in December 2009

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.273-278
    • /
    • 2016
  • December 2009 was one of the quietest (monthly Ap=2) months over the last eight decades. It provided an excellent opportunity to study the day-to-day variability of the F2 layer with the smallest contribution due to geomagnetic activity. With this aim, we analyze hourly values of the F2-layer critical frequency (foF2) recorded at 18 ionosonde stations during the magnetically quietest (Ap=0) days of the month. The foF2 variability is quantified as the relative standard deviation of foF2 about the mean of all the "zero-Ap" days of December 2009. This case study may contribute to a more clear vision of the F2-layer variability caused by sources not linked to geomagnetic activity. In accord with previous studies, we find that there is considerable "zero-Ap" variability of foF2 all over the world. At most locations, foF2 variability is presumably affected by the passage of the solar terminator. The patterns of foF2 variability are different at different stations. Possible causes of the observed diurnal foF2 variability may be related to "meteorological" disturbances transmitted from the lower atmosphere or/and effects of the intrinsic turbulence of the ionosphere-atmosphere system.