• Title/Summary/Keyword: ionomer

Search Result 471, Processing Time 0.023 seconds

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

CHANGES OF MARGINAL ADAPTATION TO THE CAVITY FLOOR OF LIGHT-CURED GLASS IONOMER CEMENT BASE AFTER APPLICATION OF A COMPOSITE RESTORATION (복합레진 적용에 따른 광중합형 글라스아이오노머 시멘트의 변연 적합도의 변화)

  • Lee, Gye-Young;Lee, Kwang-Won;Park, Soo-Joung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.136-146
    • /
    • 1999
  • The purpose of this study was to estimate the changes of marginal adaptation to the cavity floor of light-cured glass ionomer cement base after application of a composite restoration. Eighty non-carious extracted human molars were used in the present study. Circular cavities were prepared on the center of the exposed dentin surface to 0.5mm, 1.0mm, 1.5mm, 2.0mm in depth and the prepared cavities were pretreated with Dentin conditioner and filled with Fuji II LC(GC Int. Co., Japan). They randomly assigned into 3 groups according to the difference in application of a composite restoration; Group 1(control group): only glass ionomer base, Group 2: The application of a composite restoration surrounded by dentin with class I cavity over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base, Group 3: The application of composite restoration not-surrounded by dentin over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base. To examine the interface between cavity floor and light-cured glass ionomer cement base, each groups were sectioned vertically through the center of restorations with diamond saw and the gap size(${\mu}m$) of interface measured by SEM. The results were analyzed by using One Way ANOVA. The results were as follows: 1. Good adaptation between glass ionomer cement base and cavity floor was showed in specimens with 0.5mm, 1.0mm depth base of control group. But in specimens with 1.5mm, 2.0mm depth base of control group, the gap was measured about $15{\mu}m$, $40{\mu}m$ respectively. 2. Gap size in group 2 was significantly higher than that in control group(P<0.05). 3. Gap size in group 3 was significantly higher than that in control group and group 2(P<0.05). 4. It was possible to observe the good adaptation between glass ionomer cement base and dentin which was intermediated with 4-10${\mu}m$ hybrid layer in specimens with 0.5mm, 1.0mm depth base of control group. Cohesive fracture within cement base was observed in all specimens which had the gap between glass ionomer cement base & dentin. 5. It was possible to observe the gap formation between cement base and bonding agent and between composite resin and dentin in all specimens of group 2.

  • PDF

A STUDY ON THE EFFECTS OF THE TEMPERATURE AND HUMIDITY TO THE TENSILE BOND STRENGTH BETWEEN GLASS-IONOMER CEMENT AND COMPOSITE RESIN (온도 및 습도가 Glass-ionomer cement와 Composite resin의 접착강도에 미치는 변화에 관한 연구)

  • Chung, Inn-Gyo;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.60-73
    • /
    • 1991
  • The purpose of this study is to evaluate the effects of etching time, environmental temperature and humidity on the adhesion of composite resin to glass-ionomer cement. Two chemical cure composite resins (Clearfil F II and Microrest AP) and two glass-ionomer cements (Fuji ionomer Type I and KET AC-CEM) were used as the experimental materials. The experiment is performed in 3 stages: The first stage is to bond composite resins to glass-ionomer cements, and the surface was not etched, and etched for 20 seconds, 40 seconds, and 60 seconds. Then specimens are stored in distilled water at $37^{\circ}C$ for 24 hours to measure tensile strength. The second stage is to choose the one group that had the highest tensile strength from the first stage and prepare two experimental groups: One group with composite resin bonded to glass-ionomer cement without etching and bonding agent application and the other with composite resin bonded to glass-ionomer cement with etching but without any bonding agent application. The specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and tensile strength is measured. The third stage is to choose group that had the highest tensile strength from the first stage experiment, and bond composite resin to glass-ionomer cement at $24^{\circ}C$ 44%, $30^{\circ}C$ 44%, $30^{\circ}C$ 80%, and $32^{\circ}C$ 92%. The storage time of specimens is to bond immediately after storage, then changed to 30 sec., 60 sec., and 120 sec.. Specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and their tensile strength are measured again. The following results were obtained: 1. As the etching time increases, the tensile bond strength between glass-ionomer cement and composite resin increase, and the tensile bond strength is the highest when acid etched for 60 minutes (P < 0.05). 2. After acid etching for 60 minutes, the tensile strength of the group with bonding agent was stronger than that without bonding agent application (P < 0.05). 3. The tensile strength of Clearfil F II was stronger than that of Microrest AP. 4. It was observed that the tensile bond strength is not affected by different storage time with different temperature and humidity. 5. As the humidity was increased, the tensile bond strength between glass-ionomer cement and composite resin decreased (P < 0.05).

  • PDF

A STUDY ON THE MARGINAL LEAKAGE OF RESTORATIONS WITH DIFFERENT CAVOSURFACE MARGINS (와연형태(窩緣形態)에 따른 와연누출(邊緣漏出)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Shin, Han-Ju;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.119-129
    • /
    • 1986
  • The purpose of this study was to evaluate the marginal leakage of glass ionomer cement with different cavosurface margins. 192 class V cavities were prepared on freshly extracted non-carious teeth and glass ionomer cement were inserted according to the manufacturer's instructions. Cavity preparations for this investigation were performed in four groups. The experimental specimens were made by packing the glass ionomer cement (Fuji Ionomer Type II G-C Co. Japan) into the prepared 192 cavities of four groups with different modes: Group I. - The 48 cavities with $90^{\circ}$ butt-joint cavosurface preparation and restored with glass ionomer cement. Group II. - The 48 cavities with butt-joint preparation modified by $135^{\circ}$ beveling the cavosurface in the dentin and restored with glass ionomer cement. Group III. - The 48 cavities with butt-joint preparation modified by cutting a chamfer in the dentin and restored with glass ionomer cement. Group IV. - The same 48 cavities as group I, and overfilled with glass ionomer cement beyond the cavosurface angle. And four groups above described divided into three subgroups by means of conditioning the cavity walls: Control group. - Glass ionomer cement filled in the prepared 64 cavities after being cleaned with a stream of tap water. Phosphoric acid treatment group. - Glass ionomer cement filled in the prepared 64 cavities after being conditioned with a 50% phosphoric acid. Citric acid treatment group. - Glass ionomer cement filled in the prepared 64 cavities after being conditioned with a 50% citric acid. All 192 specimens were immersed in the 2.0% basic fuchsin solution and subjected to thermal stress at one-minute intervals ($4{\pm}2^{\circ}C$ to $60{\pm}2^{\circ}C$) for 70 minutes before exposure to the dye. The specimens were sectioned ecclesiologically through the center of the restorations for different periods of immersion time, 24 hours, 7 days, 14 days 30 days. The sections were examined under a stereoscopic microscope. The results were as follows: 1. The degree of marginal leakage in group II and III was greater than that in group I and IV. 2. The degree of marginal leakage in phosphoric acid treatment group was similar with that in control group. 3. The degree of marginal leakage in citric acid treatment group was less than that in control group. 4. In all groups, the degree of marginal leakage in phosphoric acid treatment group was greater than that in citric acid treatment group. 5. There is no statistical difference of the degree of marginal leakage according to the immersion time in the dye solution.

  • PDF

Determination of Properties of Ionomer Binder Using a Porous Plug Model for Preparation of Electrodes of Membrane-Electrode Assemblies for Polymer Electrolyte Fuel Cells

  • Park, Jin-Soo;Park, Seok-Hee;Park, Gu-Gon;Lee, Won-Yong;Kim, Chang-Soo;Moon, Seung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.295-300
    • /
    • 2007
  • A new characterization method using a porous plug model was proposed to determine the degree of sulfonation (DS) of ionomer binder with respect to the membrane used in membrane-electrode assemblies (MEAs) and to analyze the fraction of proton pathways through ionomer-catalyst combined electrodes in MEAs for polymer electrolyte fuel cells (PEFCs). Sulfonated poly(ether ether ketone) was prepared to use a polymeric electrolyte and laboratory-made SPEEK solution (5wt.%, DMAc based) was added to catalyst slurry to form catalyst layers. In case of the SPEEK-based MEAs in this study, DS of ionomer binder for catalyst layers should be the same or higher than that of the SPEEK membrane used in the MEAs. The porous plug model suggested that most of protons were via the ionomer binder (${\sim}92.5%$) bridging the catalyst surface to the polymeric electrolyte, compared with the pathways through the alternative between the interstitial water on the surface of ionomer binder or catalyst and the ionomer binder (${\sim}7.3%$) and through only the interstitial water on the surface of ionomer or catalyst (${\sim}0.2%$) in the electrode of the MEA comprising of the sulfonated poly(ether ether ketone) membrane and the 5wt.% SPEEK ionomer binder. As a result, it was believed that the majority of proton at both electrodeds moves through ionomer binder until reaching to electrolyte membrane. The porous plug model of the electrodes of MEAs reemphasized the importance of well-optimized structure of ionomer binder and catalyst for fuel cells.

A STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN TO GLASS IONOMER CEMENT ACCORDING TO SURFACE TREATMENT METHODS OF GLASS IONOMER CEMENT (글라스 아이오노머 시멘트의 표면처리방법에 따른 복합레진과의 전단결합강도에 관한 연구)

  • No, Bong-Hwan;Hwang, Ho-Keel;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.362-371
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength between composite resin and glass ionomer cement according to surface treatment methods of glass ionomer cement. Sixty round acrylic cylinders were fabricated. And then, a round undercut cavity(8 mm diameter, 2.5mm depth) was prepared in the center of the every acrylic cylinder. After all cavities were restored by using light-cured glass ionomer cement. A total of sixty acrylic cylinders restored with glass ionomer cement were divided into 4 groups according to surface treatment methods of glass ionomer cement. The surface treatment of each group were as follows : control group : no treatment Group 1 : acid etching Group 2 : sandblasting Group 3 : air-podwer abrasive polishing The composite resin was bonded to glass ionomer cement of each specimens. And the shear bond strength was tested with a universal testing machine at a cross-head speed of 1mm/min and 500kg in full scale. The results were as follows : 1. The sandblasting group(group 2) had the highest shear bond strength with $272.50{\pm}24.96\;kg/cm_2$ and the acid etching group(group 1) had the lowest shear bond strength with $192.89{\pm}29.32kg/cm_2$. 2. The no treated group(control group) had higher shear bond strength than acid etching group(group 1) (p<0.05). 3. The sandblasting group(group 2), air-powder abrasive polishing group(group 3) and no treated group(control group) had higher shear bond strength than the acid etching group(group 1) (p<0.05). 4. The sandblasting group(group 2) and air-powder abrasive polishing group(group 3) had higher shear bond strength than the no treatment group(control group), but there was not significant(p>0.05).

  • PDF

Dynamic Mechanical Interpretations of Shape Memory Behavior (형상기억 거동의 동적 기계적 해석)

  • 이상엽
    • The Korean Journal of Rheology
    • /
    • v.9 no.1
    • /
    • pp.33-39
    • /
    • 1997
  • PCL, MDI, BD 및 DMPA를 이용, 폴리우레탄(PU)을 ionomer 및 nonionomergudxo 로 제조하였으며 이때 연질성분의 함량(SSC) 및 길이가 PU의 기계적, 동적기계적 특성은 물론 형상기억특성에 미치는 영향을 연구하였다. Ionomer는 nonionomer에 비하여 경도, 탄 성율 및 강도가 모두 우수하였으며 그 효과는 실온에서 경질성분의 함량(HSC)이 높은 PU 일수록 보다 뚜렷하였는데 이는 HSC가 증가할수록 ion 중심의 농도가 증가하며 ion 중심간 의 Coulob 력이 고온보다 실온에서 보다 큰데 기인하는 것으로 해석하였다. 반복인장하중실 험에서 ionomer는 nonionomer에 비해 회복변형이 크고 잔류변형이 작았는데 이는 ionomer 의 고무탄성율이 보다 큰 데 기인한 것으로 해석하였다. 나아가 재료의 형상기억거동은 기 본적으로 탄성율의 온도의존성에 크게 의존함을 알수있었다.

  • PDF

Physical Properties of Glass Fiber Reinforced Nylon 6,6 and lonomer Blends (Glass Fiber로 강화된 Nylon 6,6 / Ionomer 블렌드의 물리적 특성)

  • 박광석;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.536-539
    • /
    • 1999
  • Physical properties of glass fiber-reinforced nylon 6,6 and ionomer blends were investigated in variation of ionomer and glass fiber content. With the increase of ionomer content, tensile strength, impact strength and flexural strength decreased, whereas increasing glass fiber content, these properties were improves. Both permittivity and tan $\delta$ remain unchanged. Space charge distribution was investigated by PEA (Pulsed electroacoustic) method. Heterocharge was found in nylon 6,6 and 히ass fiber composites, whereas composites, whereas when ionomer is blended.

  • PDF

AN EXPERIMENTAL STUDY ON THE MARGINAL LEAKAGE OF GLASS IONOMER CEMENT (Glass Ionomer Cement의 변록누출(邊綠漏出)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Joo, Kwang-Seop;Yoo, Kun-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.101-106
    • /
    • 1981
  • The purpose of this study was to estimate the ability of the marginal fit of Glass ionomer cement. Using the human extracted teeth and 2% acqueous solution of methylene blue, the author investigated the marginal penetration of dye in restorative materials such as Amalgam, Hi-Pol, Glass ionomer cement, Estic microfill and Restodent. The results were as follows. 1. All filling materials showed some degree of marginal penetration. 2. Glass ionomer cement revealed nearly the same microleakage as Estic microfill and Hi-Pol, but showed inferior effect of the marginal seal as compared with Restodent. 3. It is appeared that Amalgam has more effective ability of the marginal fit than the others within a week.

  • PDF

Plasticization in Unclustered Poly(methyl methacrylate) Ionomers

  • 김준섭;김희석;Adi Eisenberg
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.625-628
    • /
    • 1998
  • The dynamic mechanical properties of the unclustered cesium neutralized poly(methyl methacrylate-co-methacrylic acid) ionomers plasticized with three different plasticizers of low molecular weight were investigated. It was found that the effectiveness of the plasticization followed the order: glycerol (Gly) 4-decylaniline (4DA) >dioctyl phthalate (DOP). For the ionomer plasticized with Gly, the only effect was a significant decrease in the Tg. Thus it is concluded that the polar plasticizer not only increases the mobility of the ionomer but also dissolves the ionic groups. In the case of the 4DA-plasticized ionomer, both a drastic decrease in the Tg and the appearance of a second glass transition were observed. Therefore, it is suggested that the nonpolar 4DA molecules partition evenly in the poly(methyl methacrylate) matrix and cluster phases via hydrogen bonding between the aniline group of the plasticizer and the carbonyl groups of the ionomer. As a result, the Tg is lowered, multiplets can form, and the material behaves like a clustered ionomer.