• 제목/요약/키워드: ionization accelerator

검색결과 47건 처리시간 0.027초

Dose Distribution of $^{11}C$ Beams for Spot Scanning Radiotherapy

  • Urakabe, Eriko;Kanai, Tatsuaki;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Noda, Koji;Tomitani, Takehiro;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.202-205
    • /
    • 2002
  • This paper describes the spot scanning with $^{11}$ C beams for the Heavy Ion Medical Accelerator in Chiba (HIMAC). The concave-shaped irradiation field was optimized and the dose distribution was measured by 128-ch ionization chamber. Because of the wide momentum spread inherent in $^{11}$ C beams, the dispersion caused from the beam line and the scanning magnets should be taken into account to calculate the dose distribution of $^{11}$ C beams and their irradiated field. The reconstructed dose distribution is in good agreement with the experimental results.

  • PDF

고에너지 전자선의 방사선 치료 기술 (Radiotherapy Technique of High Energy Electron)

  • 서명원;박재일;최홍식;김우열
    • 대한방사선치료학회지
    • /
    • 제1권1호
    • /
    • pp.63-69
    • /
    • 1985
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefore, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed does, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under $3\%$ errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under $5\%$ errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatters; i.e., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

고(高)에너지 전자선(電子線) 치료(治療)를 위(爲)한 선량분포(線量分布) 및 기술적(技術的) 문제(問題)의 연구(硏究) (Studies on Dose Distribution and Treatment Technique of High Energy Electron)

  • 이도행;추성실
    • Journal of Radiation Protection and Research
    • /
    • 제3권1호
    • /
    • pp.6-22
    • /
    • 1978
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefor, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed doses, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under 3% errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under 5% errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatterers; ie., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

Deastringent Peel Extracts of Persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) Protect Neuronal PC-12 and SH-SY5Y Cells against Oxidative Stress

  • Jeong, Da-Wool;Cho, Chi Heung;Lee, Jong Suk;Lee, Seung Hwan;Kim, Taewan;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1094-1104
    • /
    • 2018
  • The peel of astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) is a by-product of dried persimmon (gotgam). We investigated if deastringent peel extracts of persimmon cv. Cheongdo-Bansi had antioxidative and neuroprotective properties. Two different extracts were prepared: thermally and nonthermally treated persimmon peel extracts (TPE and NTPE, respectively). Both TPE and NTPE were fractionated sequentially in n-hexane, chloroform, ethyl acetate, n-butanol, and water. The TPE and NTPE ethyl acetate fractions had the highest total phenolic and flavonoid contents as well as antioxidant capacities among all the fractions. Pretreatment of neuronal PC-12 and SH-SY5Y cells with the TPE and NTPE ethyl acetate fractions increased cell viability after exposure to oxidative stress. The ethyl acetate fraction of TPE attenuated oxidative stress inside both PC-12 and SH-SY5Y cells more effectively than that of NTPE. Furthermore, the TPE and NTPE ethyl acetate fractions inhibited acetylcholinesterase and butyrylcholinesterase. Analysis of ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry results revealed gallic acid, kaempferol, kaempferol-3-O-galactoside, kaempferol-3-O-glucoside, quercetin, quercetin3-O-galactoside, quercetin-3-O-galactoside-2'-O-gallate, and quercetin-3-O-glucoside as the major phenolics of the TPE and NTPE ethyl acetate fractions. Taken together, these results suggest that the ethyl acetate fraction of deastringent persimmon peel is rich in antioxidants and has potential as a functional food to reduce oxidative stress.

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

다이오드를 이용한 치료방사선 검출기의 특성에 관한 연구 (A Study on the Characteristics of Therapy Radiation Detector with Diode)

  • 이동훈;지영훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권2호
    • /
    • pp.129-138
    • /
    • 1995
  • 최근 방사선 치료에서 가속기를 이용한 고에너지, 고선량율 X-선과 전자선을 암환자 치료에 이용하고 있다. 치료시 방사선 조사선량의 5% 증감은 방사선 치료성적의 성패를 직접적으로 간여하고 있다고 국제 방사선 규정협회는 규정하고 있다. 본 논문에서는 방사선 치료에 영향을 미치는 빔 파라메터의 변동여부를 빠르고 간편하게 검출해 낼 수 있는 장치를 범용 실리콘 다이오드를 이용하여 제작한후 그 특성에 관해 고찰해 보았다. 13개 다이오드를 X-축 및 Y-축에 각각 7개씩 배열한 후 조사영역의 빔의 대칭도, 편평도, 안정성 등을 검출하여 보았고 방사선 손상에 대한 고찰, 일정기간 후의 변화량, 에너지 의존성 및 심부량 백분률등을 기존의 측정방법인 기체전리함을 이용한방법, 필름을 이용한 방법, 반도체 소자를 이용한 방법과의 값과 비교 분석하였다.

  • PDF

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

$N_{dw}{^{Co-60}}$이 정의되지 않은 원통형 이온전리함을 이용한 고에너지 광자선의 임상적 출력선량 결정 (Practical Output Dosimetry with Undefined $N_{dw}{^{Co-60}}$ of Cylindrical Ionization Chamber for High Energy Photon Beams of Linear Accelerator)

  • 오영기;최태진;송주영
    • 한국의학물리학회지:의학물리
    • /
    • 제23권2호
    • /
    • pp.114-122
    • /
    • 2012
  • 선형가속기의 출력선량의 평가는 표준선원에 의한 조사선량교정인수 $N_x$나 공기커마교정인수 $N_k$또는 더 나아가 물흡수 선량교정인수를 가진 공동전리함을 이용하여 이루어지며, 선량프로토콜에 따라 교정인수가 다르다. $N_x$를 사용하는 TG-21 프로토콜은 Bragg-Gray 공동이론에 근거하여 기체흡수교정인수를 구하고 공동전리함의 내경과 벽재질과 두께, 공동길이 등에 따라 보정인수가 정해지므로 다소 복잡한 계산절차를 가지므로 누적오차가 발생할 수 있다. TG-51은 물 흡수선량교정인수를 이용하므로써 복잡한 절차를 크게 줄여 계산오차를 피할 수 있게 되었다. 대개 1차표준국에서는 $N_x$$N_k$$N_{dw}{^{Co-60}}$을 제공하여 왔으므로, $N_{dw}$가 정해지지 않은 TM31010 계열의 공동전리함에 대해 $N_x$ 또는 $N_k$로 TG-21을 이용하여 $N_{dw}$를 결정하는 프로그램을 준비했으며, 기존 $N_x$$N_{dw}$가 제공된 IC-15 전리함의 것과 비교하여 좋은 일치결과를 얻었다. 반면에 TM31010은 이차표준국(SSDL, Secondary Standard Dosimetry Laboratory)에서 제공된 $N_k$$N_{dw}$를 구한 결과 우송형 열형광소자(TLD, Thermo Luminescence Device)에 의한 출력선량모니터 결과 불안정한 결과를 계기로 한국 표준과학연구원의 1차 표준선량시험(PSDL)의 교정인수와 비교한 결과 0.4%와 -2.8%로 각각 나타나 SSDL의 교정인수와 차이를 보여, $N_{dw}$가 정해져 있지 않거나 평가선량이 의심스러울 때는 선량프로토콜의 절차에 과한 세밀한 검토와 전리함의 교정계수에 대한 교차점검이 필요함을 알았다.

물과 백색폴리스티렌 팬텀에 의한 10 MV X-선 빔 선량계측 (10 MV X-ray Beam Dosimetry by Water and White Polystyrene Phantom)

  • 김종언;차병열;강상식;박지군;신정욱;김소영;조성호;손대웅;최치원;박창희;윤천실;이종덕;박병도
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제31권1호
    • /
    • pp.83-87
    • /
    • 2008
  • 본 연구의 목적은 고체물등가팬텀을 사용하여 절대흡수선량을 측정할 때 물등가깊이에 비례되는 측정값을 보정하기 위한 보정인자를 구하는데 있다. 10MV X-선 빔에 대하여 백색폴리스티렌팬텀과 물팬텀에서 측정의 조건들은 선원 대 전리조 중심까지의 거리를 SAD 100 cm로 고정하였고, 조사면 크기(field size)는 각각 $10{\times}10\;cm^2$, $20{\times}20\;cm^2$를 사용하였으며, 깊이는 각각 2.3 cm, 5 cm, 10 cm, 15 cm를 사용한 것이다. 두 개의 팬텀에 대하여 분당 400 MU의 출력을 갖는 선형가속기로부터 100 MU의 전달로 각각의 조사면 크기와 깊이들에서 3번 측정으로 취득된 전리의 평균값을 측정값으로 얻었다. 이 실험으로부터 보정인자와 TPR에서 퍼센트 편차는 각각 0.97%, 0.53% 이하를 얻었다. 따라서, 고체물등가팬텀을 사용한 절대흡수선량 측정 시에는 보정인자와 TPR에서 퍼센트 편차를 사용하여 보정을 행하면 높은 정확도를 얻을 수 있다.

  • PDF

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

  • Kim, Min-Tae;Lee, Hae-Kag;Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.15-19
    • /
    • 2014
  • In this study, for 6-20 MeV electron beam energy occurring in a linear accelerator, the authors attempted to investigate the relation between the effective source-skin distance and the relation between the radiation field and the effective source-skin distance. The equipment used included a 6-20 MeV electron beam from a linear accelerator, and the distance was measured by a ionization chamber targeting the solid phantom. The measurement method for the effective source-skin distance according to the size of the radiation field changes the source-skin distance (100, 105, 110, 115 cm) for the electron beam energy (6, 9, 12, 16, 20 MeV). The effective source-skin distance was measured using the method proposed by Faiz Khan, measuring the dose according to each radiation field ($6{\times}6$, $10{\times}10$, $15{\times}150$, $20{\times}20cm^2$) at the maximum dose depth (1.3, 2.05, 2.7, 2.45, 1.8 cm, respectively) of each energy. In addition, the effective source-skin distance when cut-out blocks ($6{\times}6$, $10{\times}10$, $15{\times}15cm^2$) were used and the effective source-skin distance when they were not used, was measured and compared. The research results showed that the effective source-skin distance was increased according to the increase of the radiation field at the same amount of energy. In addition, the minimum distance was 60.4 cm when the 6 MeV electron beams were used with $6{\times}6$ cut-out blocks and the maximum distance was 87.2 cm when the 6 MeV electron beams were used with $20{\times}20$ cut-out blocks; thus, the largest difference between both of these was 26.8 cm. When comparing the before and after the using the $6{\times}6$ cut-out block, the difference between both was 8.2 cm in 6 MeV electron beam energy and was 2.1 cm in 20 MeV. Thus, the results showed that the difference was reduced according to an increase in the energy. In addition, in the comparative experiments performed by changing the size of the cut-out block at 6 MeV, the results showed that the source-skin distance was 8.2 cm when the size of the cut-out block was $6{\times}6$, 2.5 cm when the size of the cut-out block was $10{\times}10$, and 21.4 cm when the size of the cut-out block $15{\times}15$. In conclusion, it is recommended that the actual measurement is used for each energy and radiation field in the clinical dose measurement and for the measurement of the effective source-skin distance using cut-out blocks.