• Title/Summary/Keyword: ionic wind

Search Result 44, Processing Time 0.021 seconds

Pollution Characteristics of PM2.5 Observed during Winter and Summer in Baengryeongdo and Seoul (겨울 및 여름철 백령도와 서울에서 측정한 PM2.5 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Park, Jong Sung;Park, Seung Myeong;Song, In Ho;Oh, Jun;Shin, Hye Jung;Lee, Min Do;Lim, Hyung Bae;Kim, Hyun Woong;Choi, Jin Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.38-55
    • /
    • 2018
  • Hourly measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), and water-soluble ionic species were made at the air quality intensive monitoring stations in Baengryeongdo (BR) and Seoul (SL) during the winter (December 01~31, 2013) and summer (July 10~23, 2014) periods, to investigate the increase of $PM_{2.5}$ and secondary ionic species and the reasons leading to their increase during the two seasons. During winter, $PM_{2.5}$ and its major chemical species concentrations were higher at SL than at BR. Contribution of organic mass to $PM_{2.5}$ was approximately 1.7 times higher at BR than at SL, but the $NO_3{^-}$ contribution was two times higher at SL. Total concentration of secondary ionic species ($SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$) at BR and SL sites accounted for 29.1 and 40.1% of $PM_{2.5}$, respectively. However, during summer, no significant difference in chemical composition of $PM_{2.5}$ was found between the two sites with the exception of $SO{_4}^{2-}$. Total concentration of the secondary ionic species constituted on average 43.9% of $PM_{2.5}$ at BR and 53.0% at SL. A noticeable difference in chemical composition between the two sites during summer was attributed to $SO{_4}^{2-}$, with approximately twofold concentration and 10% higher contribution in SL. Low wind speed and high relative humidity were important factors in secondary formation of water-soluble ionic species during winter at SL, resulting in $PM_{2.5}$ increase. While the secondary formation during summer was attributed to strong photochemical processes in daytime and high relative humidity in nighttime hours. The increase of $PM_{2.5}$ and its secondary ionic species during the winter haze pollution period at SL was mainly caused either by long-range transport (LTP) from the eastern Chinese regions, or by local pollution. However, the increased $SO{_4}^{2-}$ and $NO_3{^-}$ during summer at SL were mainly caused by LTP, photochemical processes in daytime hours, and heterogeneous processes in nighttime hours.

Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields (교류전기장이 인가된 폴리에틸렌으로 피복된 기울어진 전선을 통해 하향으로 전파하는 화염에 대한 실험적 연구)

  • Lim, Seung Jae;Park, Jeong;Kim, Min Kuk;Chung, Suk Ho;Osamu, Fujita
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

Characteristics of $PM_{2.5}$ Particles Measured in the Background Sites of Korea (우리나라 청정 지역에서 측정한 $PM_{2.5}$ 입자의 특성)

  • 이종훈;김용표;문길주;김희강;정용승;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.439-450
    • /
    • 1997
  • Atmospheric fine particles $(PM_{2.5})$ were collected at the background sites, Kangwha, Taean, and Kosan and characterized to understand their behaviors at the sites. Daily samples of $PM_{2.5}$ mass were measured and ionic species, carbonaceous species, and gaseous species were analyzed. Four-day backward trajectory analysis was also carried out. The mean concentrations of anthropogenic species were highest at Kangwha among three sites, while contributions from sea salts wree highest at Taean during the measurement period due to higher wind speed at Taean. Major chemical components in fine particles were sulfate, organic carbon, nitrate, and ammoniu. Most of the non-sea-salt (nss) sulfates in $PM_{2.5}$ might be present as ammonium sulfates at these sites. Most air parcels arriving at Kangwha and Taean were from northern China. Therefore, both sites were thought to be affected by the same air parcel. At Kosan, during the measurement period, air parcels were from either northern China or sourthern China. The nss sulfate concentration in the air parcels from southern China was higher, while the nss calcium, nitrate, and ammonium concentrations were higher when the air parcels were from northern China.

  • PDF

Electrical characteristics of soot particles in a LPG diffusion flame and particle size change by electric fields (LPG 확산화염내 매연입자의 전기적 특성 및 전기장에 의한 입자 크기 변화)

  • Park, Jong-In;Ji, Jun-Ho;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1326-1338
    • /
    • 1997
  • Electrical characteristics of soot particles in a LPG diffusion flame were studied for the control of soot particle coagulation. When a DC voltage was applied between two electrodes installed parallel to gas flow, ionic wind effect caused soot deposition on the cathode, implying that most of the soot particles were positively charged. Soot deposit on the cathode linearly increased and was saturated with respect to the strength of the applied voltage. The possibility of applying an AC voltage to enhance the particle coagulation was then investigated and the efficiency of the size control was checked with transmission electron microscope photographs. For the amplitude of 2 kV AC field, primary (spherical) soot particle size decreased from 30 ~ 40 nm to around 20 nm when the frequency of the applied AC voltage was 60 Hz and higher. Collisions between the soot particles in such a selected AC condition could lead to the formation of much bigger agglomerates of roughly 1-5 .mu.m in size.

Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data (준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명)

  • Park, Seung-Shik;Kim, Sun-Jung;Gong, Bu-Joo;Lee, Kwon-Ho;Cho, Seog-Yeon;Kim, Jong-Choon;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.

Investigation of PM2.5 Pollution Episodes in Gwangju (광주지역 PM2.5의 고농도 오염현상 조사)

  • Yu, Geun-Hye;Cho, Sung-Yong;Bae, Min-Suk;Lee, Kwon-Ho;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.269-286
    • /
    • 2015
  • 24-hr integrated $PM_{2.5}$ measurements were performed between December 2013 and October 2014 at an urban site in Gwangju and the collected samples were analyzed for organic carbon (OC), elemental carbon (EC), ionic species, and elemental species. Objectives of this study were to identify $PM_{2.5}$ pollution episodes, to characterize their chemical components, and to examine their probable origins. Over the course of the study period, average $PM_{2.5}$ concentration was $37.7{\pm}23.6$ $(6.0{\sim}121.5){\mu}g/m^3$. Concentrations of secondary ionic species; $NH_4{^+}$, $NO_3{^-}$, and $SO_4{^{2-}}$ was on average $5.54{\mu}g/m^3$ (0.28~ 20.86), $7.60{\mu}g/m^3$ (0.45~ 33.53), and $9.05{\mu}g/m^3$ (0.50~ 34.98), accounting for 13.7% (4.6~ 22.7), 18.6% (2.9~ 44.8), and 22.9% (4.9~ 55.1) of the $PM_{2.5}$ concentration, respectively. Average OC and EC concentrations were $5.22{\mu}g/m^3$ and $1.54{\mu}g/m^3$, taking possession of 4.6 and 22.2% (as organic mass) of the $PM_{2.5}$, respectively. Frequencies at which 24-hr averaged $PM_{2.5}$ exceeded a 24-hr averaged Korean $PM_{2.5}$ standard of $50{\mu}g/m^3$ (termed as an "episode" in this study) were 30, accounting for 21.3% of total 141 measurements. These pollution episodes were mostly associated with haze phenomenon and weak surface wind speed. It is suggested that secondary formation of aerosol was one important formation mechanism of the episodes. The episodes were associated with enhancements of organic mass, $NO_3{^-}$ and $SO_4{^{2-}}$ in winter, of $NO_3{^-}$ and $SO_4{^{2-}}$ in spring, and of $SO_4{^{2-}}$ in summer. Potential source contribution function results indicate also that $PM_{2.5}$ episodes were likely attributed to local and regional haze pollution transported from northeastern China in winter, to atmospheric processing of local emissions rather than long-range transport of air pollutants in spring, and to the $SO_4{^{2-}}$ driven by photochemistry of $SO_2$ in summer.

Characteristics of Ionic and Carbonaceous Compounds in PM2.5 and High Concentration Events in Chuncheon, Korea (강원도 춘천에서 측정한 PM2.5의 탄소 및 이온성분 농도 특성 및 고농도 사례 분석)

  • Cho, Sung-Hwan;Kim, Pyung-Rae;Han, Young-Ji;Kim, Hyun-Woong;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.435-447
    • /
    • 2016
  • Anthropogenic emissions of $PM_{2.5}$ in Chuncheon are considered to be low according to the national emissions inventory; however, the atmospheric $PM_{2.5}$ concentrations have been reported to be higher than or at least similar to those measured in metropolitan (e.g. Seoul) and/or in industrial cities (e.g. Incheon, Ulsan). In this study, the concentrations of $PM_{2.5}$ and its ionic and carbonaceous compounds were measured from Jan. 2013 to Dec. 2014 in Chuncheon, Korea to identify the characteristics of high $PM_{2.5}$ concentration event. Average $PM_{2.5}$ concentration was $34.6{\mu}g/m^3$, exceeding the annual air quality standard ($25{\mu}g/m^3$). The most abundant compound was organic carbon (OC), comprising 26% of $PM_{2.5}$ mass, followed by $SO_4{^{2-}}$. Among 14 high concentration events, three events showed clearly enhanced contributions of OC, $SO_4{^{2-}}$, $NO_3{^-}$ and $NH_4{^+}$ to $PM_{2.5}$ under the fog events. One event observed in summer showed high concentration of $SO_4{^{2-}}$ while the high wind speeds and the low $PM_{2.5}/PM_{10}$ ratios were observed for the two high concentration events. These results indicate that the secondary aerosol formation under the fog events and high atmospheric temperature as well as the regional and/or the long-range transport were important on enhancing $PM_{2.5}$ concentration in Chuncheon. Cluster analysis based on back trajectories also suggested the significant impacts of regional transport from China and metropolitan areas of Korea on $PM_{2.5}$ in Chuncheon.

Effect of AC Electric Field on Decreasing Liftoff Height in Laminar Lifted Jet Flames (층류 부상 화염의 화염부상 높이 감소 구간에서 교류 전기장이 인가된 화염에 관한 영향)

  • Seo, B.H.;Van, K.H.;Kim, G.T.;Park, J.;Keel, S.I.;Kim, S.W.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.17-22
    • /
    • 2017
  • An experimental study has been conducted to elucidate the effect of AC electric field on behaviors of laminar lifted flame in nitrogen-diluted methane coflow-jets. Our concerns are focued on the regime to show a decrease in liftoff height, $H_L$ with increasing nozzle exit velocity, $U_O$ (hereafter, $decreasing-H_L$). The $H_L$ with $U_O$ near flame extinction were measured by varying the applied AC voltage, $V_{AC}$ and frequency, $f_{AC}$ in a single electrode configuration. The behavior of $H_L$ with a functional dependency of $V_{AC}$ and $f_{AC}$ was categorized into two regime : (I) $H_L$ decreased for nozzle diameter, D = 1.0 mm, and (II) $H_L$ increased in the increase of $f_{AC}$ for a fixed $V_{AC}$ in a D = 4.0, 8.4 mm. The lifted flames in $decreasing-H_L$ region was unstable in high voltage regimes while the $H_L$ showed a decreasing tendency with $U_O$ except them. Such behaviors in $H_L$ were also characterized by functional dependencies of related physical parameters such as $V_{AC}$, $f_{AC}$, $U_O$, fuel mole fraction ($X_{F.O}$) and D.

Seasonal Composition Characteristics of TSP and PM2.5 Aerosols at Gosan Site of Jeju Island, Korea during 2008-2011

  • Kim, Won-Hyung;Hwang, Eun-Yeong;Ko, Hee-Jung;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.217-226
    • /
    • 2013
  • The collection of TSP and $PM_{2.5}$ aerosols has been made at the Gosan Site of Jeju Island during 2008-2011, and their ionic and elemental species were analyzed, in order to examine the seasonal variation and characteristics of aerosol compositions. The anthropogenic components ($NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$, S, Zn, Pb) and the soil components ($nss-Ca^{2+}$, Al, Fe, Ca) showed high concentrations in spring as the prevailing westerly wind, but the concentrations of the sea-salt components ($Na^+$, $Cl^-$) were high in winter. In TSP, the neutralization by $NH_3$ increased in summer, but the neutralization by $CaCO_3$ increased in spring and fall seasons. The organic acids ($HCOO^-$, $CH_3COO^-$) contributed to the acidification of the aerosols by only 5.0%, so the acidification could be mostly contributed by the inorganic acids ($SO_4{^{2-}}$, $NO_3{^-}$). From the examination of the source origins by factor analysis, the compositions of TSP were influenced by the order of soil > anthropogenic > marine, on the other hand, those of $PM_{2.5}$ were by the order of anthropogenic > marine > soil. The backward trajectory analyses showed that the concentrations of $NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$ and $nss-Ca^{2+}$ increased highly when the air masses had moved from China continent into Gosan area of Jeju Island.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.