• Title/Summary/Keyword: ionic polarizability

Search Result 11, Processing Time 0.015 seconds

Microwave Dielectric Properties of (Pb0.4Ca0.6)[(Fe1/2Nb1/2)1-x(Mg1/3Nb2/3)x]O3 Ceramics

  • Kim, Eung-Soo;Han, Ki-Moon;Kim, Jong-Hee;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.323-327
    • /
    • 2003
  • Microwave dielectric properties of (P $b_{0.4}$C $a_{0.6}$)[($Fe_{\frac{1}{2}}$N $b_{\frac{1}{2}}$)$_{1-x}$ (M $g_{1}$ 3/N $b_{2}$ 3/)x] $O_3$ (PCFMN) ceramics were investigated as a function of (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ content (0.1$\leq$x$\leq$0.8). A single perovskite phase with the cubic structure was obtained through the given composition range. The unit cell volume was increased with (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$, due to the larger average ionic size of (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ than that of ($Fe_{\frac{1}{2}}$N $b_{\frac{1}{2}}$)$^{4+}$ for B-site ion. Dielectric constant (K) and Temperature Coefficient of Resonant Frequency(TCF) of PCFMN ceramics were dependent on (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ content due to the decrease of ionic polarizability and B-site bond valence, respectively. Qf value was decreased with (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ content due to the decrease of grain size. Typically, K of 73.56, Qf of 5,074 GHz and TCF of -6.45 ppm/$^{\circ}C$ were obtained for the specimens with x=0.4 sintered at 125$0^{\circ}C$ for 3 h.125$0^{\circ}C$ for 3 h.