• Title/Summary/Keyword: ionic liquid

Search Result 470, Processing Time 0.019 seconds

Effect of Concentration of Ionic Liquids on Resolution of Nucleotides in Reversed-phase Liquid Chromatography

  • Hua, Jin Chun;Polyakova, Yulia;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.601-606
    • /
    • 2007
  • The chromatographic behaviors of nucleotides (inosine 5'-monophosphate, uridine 5'-monophosphate, guanosine 5'-monophosphate, and thymine monophosphate disodium salts) on a C18 column were studied with different types of ionic liquids (ILs) as additives for the mobile phase in reversed-phase liquid chromatography (RPLC). Three ILs, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][BF4]), and 1-ethyl-3-methylimidazolium methylsulfate ([EMIm][MS]), were used. Eluents were composed of water and methanol (90/10%, vol) with the addition of 0.5-13.0 mM of ILs. The effects of the concentration of ILs on retention and separation were investigated and discussed. The results showed that the addition of ILs affects the retention and resolution of the tested compounds. Use of 13.0 mM of [BMIm][BF4] as the eluent modifier resulted in a baseline separation of nucleotides without requiring gradient elution. This study demonstrates that ILs can be potentially applied as a mobile phase modifier in RPLC.

Simultaneous Determination of Cd2+, Pb2+, Cu2+ and Hg2+ at a Carbon Paste Electrode Modified with Ionic Liquid-functionalized Ordered Mesoporous Silica

  • Zhang, Penghui;Dong, Sheying;Gu, Guangzhe;Huang, Tinglin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2949-2954
    • /
    • 2010
  • Ionic liquid-functionalized ordered mesoporous silica SBA-15 modified carbon paste electrode (CISPE) was fabricated and its electrochemical performance was investigated by cyclic voltammetry, electrochemical impedance spectra. The electrochemical behavior of $Cd^{2+}$, $Pb^{2+}$, $Cu^{2+}$ and $Hg^{2+}$ at CISPE was studied by differential pulse anodic stripping voltammetry (DPASV). Compared with carbon paste electrode, the stripping peak currents had a significant increase at CISPE. Under the optimized conditions, the detection limits were $8.0{\times}10^{-8}\;M$ ($Cd^{2+}$), $4.0{\times}10^{-8}\;M$ ($Pb^{2+}$), $6.0{\times}10^{-8}\;M$ ($Cu^{2+}$), $1.0{\times}10^{-8}\;M$ ($Hg^{2+}$), respectively. Furthermore, the present method was applied to the determination of $Cd^{2+}$, $Pb^{2+}$, $Cu^{2+}$ and $Hg^{2+}$ in water samples and people hair sample.

Influence of the Cation Parts of Imidazolium Hexafluorophosphate on Synthesis of Pd/C Particles as a HFP Hydrogenation Catalyst (Imidazolium Hexafluorophosphate의 양이온이 HFP 수소화 반응용 Pd/C 촉매 제조에 미치는 영향)

  • Kim, Chang-Soo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.249-253
    • /
    • 2014
  • Palladium on carbon catalysts for hexafluoropropylene hydrogenation were prepared using imidazolium hexafluorophosphate with various cation parts. The morphology of palladium was relatively affected by the cation parts of the ionic liquid. With increasing alkyl chains of the ionic liquid cation, the shape of palladium particle changed from spherical to cylindrical due to the effect of steric stabilization. After calcination at $500^{\circ}C$, all catalysts possessed the comparable crystal structure. Under the identical reaction conditions, the catalyst prepared using the ionic liquid with hexyl chain in cation parts showed the most effective reactivity.

Effect of Abnormal Grain Growth on Ionic Conductivity in LATP (LATP 내 비정상 입자성장이 이온 전도도에 미치는 영향)

  • Hyungik Choi;Yoonsoo Han
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • This study investigates the effect of the microstructure of Li1.3Al0.3Ti1.7(PO4)3 (LATP), a solid electrolyte, on its ionic conductivity. Solid electrolytes, a key component in electrochemical energy storage devices such as batteries, differ from traditional liquid electrolytes by utilizing solid-state ionic conductors. LATP, characterized by its NASICON structure, facilitates rapid lithium-ion movement and exhibits relatively high ionic conductivity, chemical stability, and good electrochemical compatibility. In this study, the microstructure and ionic conductivity of LATP specimens sintered at 850, 900, and 950℃ for various sintering times are analyzed. The results indicate that the changes in the microstructure due to sintering temperature and time significantly affect ionic conductivity. Notably, the specimens sintered at 900℃ for 30 min exhibit high ionic conductivity. This study presents a method to optimize the ionic conductivity of LATP. Additionally, it underscores the need for a deeper understanding of the Li-ion diffusion mechanism and quantitative microstructure analysis.

XPS Investigation of A3 Coupling Reaction in Room Temperature Ionic Liquids

  • Kwon, Ji-Hye;Youn, So-Won;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1851-1853
    • /
    • 2006
  • We herein report a new analytical application of XPS to the identification of organic molecules in room temperature ionic liquid for the first time. An organic compound, propargylamine (1), produced in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][$PF_6$]), which is one of the room temperature ionic liquids (RTILs), via $A^3$ coupling reaction, is characterized by means of x-ray photoelectron spectroscopy (XPS) rather than using conventional organic compound analysis techniques. There are four non-equivalent carbons in RTILs and 1 each. The ratios of normalized integrated areas of the deconvoluted binding energy of core electron of carbon (C1s) peaks are well matched to the number of carbons in those compounds. The binding energies of C1s of the featured carbons in 1, C4 (sp carbons in acetylene group) and C5 ($sp^2$ carbons in benzene ring), are assigned 286.2 and 285.4 eV, respectively. These results will be able to provide an important tool and a new strategy for the analysis of organic molecules

A Review of the Technical Development on Ionic Liquids for Hypergolic Propellants (하이퍼골릭 이온성 추진제 연구 개발 동향)

  • Hongjae Kang;Kyounghwan Lee;Chungman Kim;Jongkwang Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.74-85
    • /
    • 2022
  • Since the late 1990s, the demand for developing green or reduced-toxic storable propellants has been rising to replace the existing toxic propellants. Most of the research activities are focusing on development of new hypergolic fuels and either white fuming nitric acid or hydrogen peroxide is utilized as an oxidizer. The newly-developed hypergolic fuels are classified as three types, catalytic fuel, reactive fuel, and ionic fuel. In the present study, recent R&D trend of ionic liquid propellants is described and the main results in the previous studies are analyzed.

Thermodynamic Assessment of the $ZrO_2-TiO_2$ System

  • Park, Jeong-Ho;Ping Liang;Seifert, Hans-Jurgen;Fritz Aldinger;Koo, Bon-Keup;Kim, Ho-Gi
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • A thermodynamic assessment for the ZrO$_2$-TiO$_2$ system has been conducted. An optimal thermodynamic data set for this system is evaluated by the CALPHAD(CALculation of PHAse Diagram) method applied to experimental phase diagram and thermodynamic data. The liquid is described by ionic liquid model with two sublattices. The solubilities of the solid phases, tetragonal ZrO$_2$ and TiO$_2$(rutile), were described by subregular substitutional model with one sublattice. Two compounds, ZrTiO$_4$ and ZrTi$_2$O$_6$, are modeled as stoichiometric compounds.

  • PDF

Chiral Separation of Tryptophan Enantiomers by Liquid Chromatography with BSA-Silica Stationary Phase

  • Kim Kwonil;Lee Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • The separation of tryptophan enantiomers was carried out with medium-pressure liquid chromatography using BSA (bovine serum albumin)-bonded silica as a chiral stationary phase. The influence of various experimental factors such as pH and ionic strength of mobile phase, separation temperature, and the presence of organic additives on the resolution was studied. In order to expand this system to preparative scale, the loadability of sample and the stability of stationary phase for repeated use were also examined. The separation of tryptophan enantiomers was successful with this system. The data indicated that a higher separation factor (a) was obtained at a higher pH and lower temperature and ionic strength in mobile phase. Addition of organic additives (acetonitrile and 2-propanol) in mobile phase contributed to reduce the retention time of L-tryptophan. About $30\%$ of the separation factor was reduced after 80 days of repeated use.

  • PDF

High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid (1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide 이온성 액체에 대한 이산화탄소의 고압 용해도)

  • Nam, Sang-Kyu;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.79-91
    • /
    • 2014
  • Solubility data of carbon dioxide ($CO_2$) in 1-butyl-3-methylpiperidinium bis(trifluoromethylsulfonyl)imide ($[bmpip][Tf_2N]$) ionic liquid are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. As far as we know, the data on the $CO_2$ solubility in the $[bmpip][Tf_2N]$ ionic liquid have never been reported in the literature by other investigators. The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the $CO_2+[bmpip][Tf_2N]$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the cation composing the ionic liquid on the $CO_2$ solubility, the $CO_2$ solubilities in $[bmpip][Tf_2N]$ used in this study were compared with those in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ($[bmim]Tf_2N]$). As the equilibrium pressure increased, the $CO_2$ solubility in $[bmpip][Tf_2N]$ increased sharply. On the other hand, the $CO_2$ solubility decreased with increasing temperature. The mole fraction-based $CO_2$ solubilities were almost the same for both $[bmpip][Tf_2N]$ and $[bmim][Tf_2N]$, regardless of temperature and pressure. The phase equilibrium data for the $CO_2+[bmpip][Tf_2N]$ systems have been correlated using the Peng-Robinson equation of state.

The analytical study on synthesis and purification of high purity ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (이온성 액체 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4)의 합성과 정제에 관한 분석 연구)

  • Yang, Kyung-Chul;Lee, Young-Hwan
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.477-483
    • /
    • 2011
  • This work is on the synthesis of EMI-$BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) and purification of spectroscopic grade using aluminium oxide method, activated charcoal method, and liquid/liquid fractional extraction method in order to make supercapacitor finally. But the aluminum oxide method and the activated charcoal method were not suitable for obtaining high-purity ionic liquids. The liquid/liquid fractional distillation method turned out that as the concentration of solvent ($H_2O$) was increased, the higher purity of EMI-$BF_4$ was obtained and the electrical capacity of this compound was increased to higher value. When the solvent was changed to from methylene chloride to 1,2-dichloroethane, the higher purity of EMI-$BF_4$ was obtained.