• Title/Summary/Keyword: ion-implantation

Search Result 507, Processing Time 0.027 seconds

Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool (초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

Efficiency of an SCM415 Alloy Surface Layer Implanted with Nitrogen Ions by Plasma Source Ion Implantation

  • Lyu, Sung-Ki;He, Hui-Bo;Lu, Long;Youn, Il-Joong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.47-50
    • /
    • 2006
  • SCM415 alloy was implanted with nitrogen ions using plasma source ion implantation (PSII), at a dose range of $1{\times}10^{17}\;to\;6{\times}10^{17}\;N^+cm^{-2}$ Auger electron spectrometry (AES) was used to investigate the depth profile of the implanted layer. Friction and wear tests were carried out on a block-on-ring wear tester. Scanning electron microscopy (SEM) was used to observe the micro-morphology of the worn surface. The results revealed that after being implanted with nitrogen ions, the frictional coefficient of the surface layer decreased, and the wear resistance increased with the nitrogen dose. The tribological mechanism was mainly adhesive, and the adhesive wear tended to become weaker oxidative wear with the increase in the nitrogen dose. The effects were mainly attributed to the formation of a hard nitride precipitate and a supersaturated solid solution of nitrogen in the surface layer.

A Study of Semiconductor Process Simulator with User Friendly Framework (사용자 친숙형 반도체 공정 시뮬레이터의 구성에 관한 연구)

  • 이준하;이흥주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.331-335
    • /
    • 2004
  • In this paper, we modeling the oxidation, diffusion, and ion-implantation for semiconductor process simulation, and construct the integrated framework for efficient execution and continuous process simulation. For oxidation process, to predict the accurate LOCOS shape and stress distributions, stress-dependent viscous model was performed using SVP algorithm. For diffusion process, predeposition and OED simulation was performed using point defect theory. For ion implantation, Monte-Carlo method based on TRIM simulation was performed with various process conditions. For input to each unit process, we used the dialog boxes which are windows application's standards. This dialog box allows us to verify and minimize input error at input steps. Using the combination of compiler's function and windows's API function, simulation was done with small memory size.

  • PDF

A Study on the Shallow $p^+-n$ Junction Formation and the Design of Diffusion Simulator for Predicting the Annealing Results ($p^+-n$ 박막접합 형성방법과 열처리 모의 실험을 위한 시뮬레이터 개발에 관한 연구)

  • Kim, Bo-Ra;Lee, Jae-Young;Lee, Jeong-Min;Hong, Shin-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.115-117
    • /
    • 2005
  • In this paper, we formed the shallow junction by preamorphization and low energy ion implantation. And a simulator is designed for predicting the annealing process results. Especially, if considered the applicable to single step annealing process(RTA, FA) and dual step annealing process(RTA+FA, FA+RTA). In this simulation, the ion implantation model and the boron diffusion model are used. The Monte Carlo model is used for the ion implantation. Boron diffusion model is based on pair diffusion at nonequilibrium condition. And we considered that the BI-pairs lead the diffusion and the boron activation and clustering reaction. Using the boundary condition and initial condition, the diffusion equation is solved successfully. The simulator is made ofC language and reappear the experimental data successfully.

  • PDF

Cutting Characteristics of Plasma Source Son Implanted Tungsten Carbide Tool (플라즈마 이온주입에 의해 표면 개질한 초경공구의 가공특성)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • In this research, the effects for surface Improvement of plasma ion implanted carbide endmill tools were observed by measuring cutting forces and tools wear affecting surface roughness in high speed cutting. From the 2nd ion mass analysis, the oxidation layer was found to be built up by sputtering. The residual gas contamination of oxygen was found to be contained impurities in nitrogen gas. The plasma implanted ion was found to be spreaded, especially the nitrogen was implanted up to 150nm depth as impressed voltage and ion implanting time. It is analyzed as bring surface improvement by spreading deeply forming oxidation on surface. The factors in Analysis of Variance(ANOVA) about mutuality cause reference of cutting force. The cutting force Fx is affected by the interaction of spindle rpm and federate, the cutting force Fy is influenced by spindle rpm and time injected ion, and cutting force Fz is affected by the interaction of impressed voltage and feedrate. Also, it was found that the cutting forces of implanted tools become lower and the surface roughness is improved by the effect of nitrogen according to the implantation.

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

A Study on Refresh Time Improvement of DRAM using the MEDICI Simulator (MEDICI 시뮬레이터를 이용한 DRAM의 Refresh 시간 개선에 관한 연구)

  • 이용희;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. The novel junction process scheme in sub-micron DRAM cell with STI(Shallow Trench Isolation) has been investigated to improve the tail component in the retention time distribution which is of great importance in DRAM characteristics. In this' paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced ${\Delta}Rp$ (projected standard deviation) increase using buffered N-implantation with tilt and 4X(4 times)-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N-concentration which is Intentionally caused by ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation. And also, we suggest the least requirements for adoption of this new implantation scheme and the method to optimize the key parameters such as tilt angle, rotation number, Rp compensation and Nd/Na ratio. We used MEDICI Simulator to confirm the junction device characteristics. And measured the refresh time using the ADVAN Probe tester.

  • PDF

Ion implatation technology for fabrication of high efficiency crystalline silicon solar cells

  • Jeon, Min-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.81.1-81.1
    • /
    • 2015
  • 최근 실리콘(Si) 원재료 가격의 하락으로 인하여, 태양광 시장에서 성능 좋은 저가의 태양광 모듈을 요구하고 있다. 즉, 와트(W)당 낮은 가격의 태양광 모듈을 선호하기 때문에 경쟁력을 갖추기 위하여서는 많은 출력을 낼 수 있는 고효율의 태양전지가 요구된다. 그래서 주목을 받고 있는 것이 N-type 실리콘 기판을 사용한 고효율 태양전지이다. 하지만, n-type Si 기판의 경우, pn 접합의 형성을 위하여서 기존의 열 확산(Thermal diffusion)법에 의한 에미터(Emitter) 형성방법은 양질의 pn접합을 형성하기에는 한계가 있다. 그로 인하여 주목하고 있는 기술이 반도체 공정에서 널리 사용되고 있는 이온 주입(Ion implantation)방식이다. 이 기술은 양질의 에미터 형성을 위하여, 동일한 양의 불순물(dopant) 주입, 정확한 접합 깊이 제어 등이 가능한 방법으로 고효율 태양전지 제작에 필수적이며, 가능한 기술이라고 할 수 있다. 본 발표에서는 어플라이드 머트리얼즈(Applied Materials)사가 보유하고 있는 고효율 태양전지 제작에 필수적인 이온주입방식의 기술과 양산화 가능한 관련장비 등을 소개 하고자 한다.

  • PDF

A study on the silicon point defects and ultra-low energy si ion implantation using classical molecular dynamics (분자 동역학을 이용한 점 결함 극 저 에너지 실리콘 이온 주입에 관한 연구)

  • 강정원;손명식;변기량;황일정
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.335-338
    • /
    • 1998
  • We have calculated ultra-low energy silicon-self ion implantations and silicon damages through classical molecular dynamics simulation using empirical potentials. We tested whether the recently developed environment-dependent interatomic ptential (EDIP) was suitable for ultra low ion implantation simulation, and found that point defects formation energies were in good agrrement with other theoretical calculations, but the calculated vacancy migration energy was overestimated. The number of isolated defects that are produced by collision cascades are onlya few of the total number of defects, and fmost of the damages are concentrated into amorphous-like pockets.

  • PDF

Influence of Trap Passivation by Hydrogen on the Electrical Properties of Polysilicon-Based MSM Photodetector

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.316-319
    • /
    • 2017
  • A new approach to improving the electrical characteristics and optical response of a polysilicon-based metal-semiconductor-metal (MSM) photodetector is proposed. To understand the cause of current restriction in the MSM photodetector, modified trap mechanisms are suggested, which include interfacial electron traps at the metal/polysilicon interface and silicon dangling bonds between silicon crystallite grains. Those traps were passivated using hydrogen ion implantation with subsequent post-annealing. Photodetectors that were ion-implanted under optima conditions exhibited improved photoconductivity and reduced dark current instability, implying that the hydrogen bonds in the polysilicon influence the simultaneous decreases in the density of dangling bonds at grain boundaries and the trapped positive charges at the contact interface.