• Title/Summary/Keyword: ion-implantation

Search Result 506, Processing Time 0.03 seconds

Development of methodology for evaluating tribological properities of Ion-implanted steel (이온 주입한 강의 미시적 마모 튼성의 평가)

  • MOON, Bong-Ho;CHOI, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.146-154
    • /
    • 1997
  • Ion implantation has been used successfully as a surface treatment technology to improve the wear. fatigue and corrosion resistances of materials. A modified surface layer by ion implantation is very thin(under 1 m), but it has different mechanical properties from the substrate. It has also different wear characteristics. Since wear is a dynamic phenomenon on interacting surfaces with relative motion, an effective method for investigtating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. The change of wear properties produces the transition of wear mode. To know the microscopic wear mechanism of this thin layer, it is very important to clarify its microscopic wear mode. In this paper, using the SEM and AFM Rribosystems as in-situ system, the microscopic wear of Ti ion-implanted 1C-3Cr steel, a material for roller in the cold working process, was investigated in repeated sliding. The depth of wear groove and the speciffc wear amount were changed with transition of microscopic wear mode. The depth of wear groove with friction cycles in AFM tribosystem and specific wear amount of Ti ion-implanted 1C-3Cr steel were less about 2-3 times than those of non-implanted 1C-3Cr steel. The microscopic wear mechansim of Ti ion-implanted 1C-3Cr steel was also clarified. The microscopic wear property was quantitatively evaluated in terms of microscopic wear mode and specific wear amount.

  • PDF

TEM을 이용한 Ion Implanted Sample의 관찰 및 분석

  • Baek, Mun-Cheol;Gwon, O-Jun
    • ETRI Journal
    • /
    • v.9 no.3
    • /
    • pp.106-114
    • /
    • 1987
  • Ion implantation 공정은 VLSI processing의 필수적인 기술로서 그 중요성이 더해가고 있다. 그러나 고 energy의 ion주입에 따른 defect의 발생 및 그 제어기술이 문제가 되고 있으며, 이러한 기술의 개발을 위해서는 그 defect의 정밀관찰 및 분석이 필요하다. 여기에서는 이와 같은 분석기술에 대하여 TEM을 이용한 분석사례를 들어 정리하였다. 그리고 RBS, SIMS 등 분석 기술과의 combination에 대하여 고찰하였다.

  • PDF

Arsenic implantation graph comparing with Dopant diffusion simulation and 1-D doping simulation (performed by synopsys sentaurus process)

  • Im, Ju-Won;Park, Jun-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.344-346
    • /
    • 2016
  • 본 논문에서는 3-stream model에 기반한 Dopant diffusion simulator를 사용하여 실리콘 기판 내부의 As이온의 확산을 시뮬레이션한 결과와 Dual-Pearson Analytic model에 기반하여 Ion implantation을 1-D doping simulation한 결과를 토대로 여러 공정 설계에서 diffusion simulator의 사용가능함을 확인하였다.

  • PDF

The design and fabricationt for ion fraction measurement of plasma generator (플라즈마발생기의 이온분율 측정 장치 설계 및 제작)

  • Lee, Chan-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.368-368
    • /
    • 2008
  • Ion implantation has been widely developed during the past decades to become a standard industrial tool. To comply with the growing needs in ion implantation, innovative technology for the control of ion beam parameters is required. Beam current, beam profile, ion fractions are of great interest when uniformity of the implant is an issue. Especially, it is important to measure the spatial distribution of beam power and also the energy distribution of accelerated ions. This energy distribution is influenced by the proportion of mass for ion in the plasma generator(ion source) and by charge exchange and dissociation within the accelerator structure and also by possible collective effects in the neutralizer which may affect the energy and divergence of ions. Hydrogen atom has been the object of a good study to investigate the energy distribution. Hydrogen ion sources typically produce multi-momentum beams consisting of atomic ion ($H^+$) and molecular ion ($H_2^+$ and $H_3^+$). In the beam injector, the molecular ions pass through a charge-exchanges gas cell and break up into atomic with one-half (from $H_2^+$) or one-third (from $H_3^+$) according to their accelerated energy. Burrell et al. have observed the Doppler shifted lines from incident $H^+$, $H_2^+$, and $H_3^+$ using a Doppler shift spectroscopy. Several authors have measured the proportion of mass for hydrogen ion and deuterium using an ion source equipped with a magnetic dipole filter. We developed an ion implanter with 50-KeV and 20-mA ion source and 100-keV accelerator tube, aiming at commercial uses. In order to measure the proportion of mass for ions, we designed a filter system which can be used to measure the ion fraction in any type of ion source. The hydrogen and helium ion species compositions are used a filter system with the two magnets configurations.

  • PDF

The preparation of ultra hard nitrogenated DLC film by $N_2^+$ implantation

  • Olofinjana, A.O.;Chen, Z.;Bell, J.M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.165-166
    • /
    • 2002
  • Hydrogen free diamond like carbon (DLC) films were prepared on steel substrates by using a single ion beam in a configuration that allowed sputtering of a graphite target and at the same time allowed to impact the substrate at a grazing angle. The DLC films so prepared have improved properties with increased disorder and with modest hardness that is slightly higher than previously reported values. We have studied the effects of $N_2^+$ ions implantation on such films. It is found that the implantations of nitrogen ions into DLC films lead to chemical modifications that allowed N atoms to be incorporated into the carbon network to produce a nitrogenated DLC. Nano-indentation experiments indicated that the nitrogenated films have consistently higher hardnesses ranging from 30 to 45GPa, which represents a considerable increase in surface hardness, compared with non-nitrogenated precursor films. The investigations by XPS and Raman spectroscopy suggests that the $N_2^+$ implanted DLCs had undergone both chemical and structural modifications through the incorporation of N atoms and the increased ratio of $sp^3/sp^2$ type bonding. The observed high hardness was therefore attributable to these structural and chemical modifications. This result has implication for the preparation of super hard wear resistant films required for tribological functions in devices.

  • PDF

Low-resistance W Bit-line Implementation with RTP Anneal & Additional ion Implantation (RTP 어닐과 추가 이온주입에 의한 저-저항 텅스텐 비트-선 구현)

  • Lee, Yong-Hui;Lee, Cheon-Hui
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.375-381
    • /
    • 2001
  • As the device geometry continuously shrink down less than sub-quarter micrometer, DRAM makers are going to replace conventional tungsten-polycide bit-line with tungsten bit-line structure in order to reduce the chip size and use it as a local interconnection. In this paper we showed low resistance tungsten bit-line fabrication process with various RTP(Rapid Thermal Process) temperature and additional ion implantation. As a result we obtained that major parameters impact on tungsten bit-line process are RTP Anneal temperature and BF$_2$ ion implantation dopant. These tungsten bit-line process are promising to fabricate high density chip technology.

  • PDF

Suppression of Macrostep Formation Using Damage Relaxation Process in Implanted SiC Wafer (SiC 웨이퍼의 이온 주입 손상 회복을 통한 Macrostep 형성 억제)

  • Song, G.H.;Kim, N.K.;Bahng, W.;Kim, S.C.;Seo, K.S.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.346-349
    • /
    • 2002
  • High Power and high dose ion implantation is essentially needed to make power MOSFET devices based on SiC wafers, because the diffusivities of the impurities such as Al, N, p, B in SiC crystal are very low. In addition, it is needed high temperature annealing for electrical activation of the implanted species. Due to the very high annealing temperature, the surface morphology after electrical activation annealing becomes very rough. We have found the different surface morphologies between implanted and unimplanted region. The unimplanted region showed smoother surface morphology It implies that the damage induced by high energy ion implantation affects the roughening mechanism. Some parts of Si-C bonding are broken in the damaged layer, s\ulcorner the surface migration and sublimation become easy. Therefore the macrostep formation will be promoted. N-type 4H-SiC wafers, which were Al ion implanted at acceleration energy ranged from 30kev to 360kev, were activated at 1600$^{\circ}C$ for 30min. The pre-activation annealing for damage relaxation was performed at 1100-1500$^{\circ}C$ for 30min. The surface morphologies of pre-activation annealed and activation annealed were characterized by atomic force microscopy(AFM).

  • PDF

Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool (초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.