• Title/Summary/Keyword: ion water

Search Result 2,598, Processing Time 0.03 seconds

Effect of Packing Density of ion-Exchange on the Nickel Adsorption Column in Electroplating Rinse Water (이온교환 칼럼 충진비의 변화가 도금폐수 중 니켈이온 흡착에 미치는 영향)

  • 황택성;이진혁
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.551-558
    • /
    • 2002
  • It was observed that adsorption characteristics of sulfonated fabric ion-exchanger for separating nickel ion from electroplating rinse water. Swelling ratio was increased by increasing degree of sulfonation and polarity of solvent. Ion-exchange capacity was also increased by increasing degree of sulfonation and showed 3.38 meq/g at 16% sulfonated ion-exchanger. There was little effects of pH. Adsorption equilibrium was attained within 10 min, and adsorption rate was 7.5 mg/min. Adsorption capacity was not changed after 7 cycles of regeneration process. Regeneration adsorption capacity was slightly decreased to 2.01 meq/g. It confirmed that durability of sulfonated fabric ion-exchanger was suitable for adsorption process. Adsorption equilibrium time was linearly increased by increasing L/D and adsorption capacity showed the ion exchange capacity within the range of 2.71 ∼ 3.01 meq/g in continuous process. Design of adsorption column could be possible for L/D<2. Under constant L/D condition, there is no little pH effect when rinse water is acidic solution, and operation condition of adsorption process was optimized under pH 5.

Determination of trace bromate in various water samples by direct-injection ion chromatography and UV/Visible detection using post-column reaction with triiodide

  • Kim, Jungrae;Sul, Hyewon;Song, Jung-Min;Kim, Geon-Yoon;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Bromate is a disinfection by-product generated mainly from the oxidation of bromide during the ozonation and disinfection process in order to remove pathogenic microorganism of drinking water, and classified as a possible human carcinogen by International Agency for Research of Cancer (IARC) and World Health Organization (WHO). For the purpose of determining the trace level concentration of bromate, several sensitive techniques are applied mostly based on suppressed conductivity detection and UV/Visible detection after postcolumn reaction (PCR). In this study, the suppressed conductivity detection method and the PCR-UV/Visible detection method through the triiodide reaction were compared to analyze the trace bromate in water samples and estimated for the availability of these analytical methods. In addtion, the state-of-the-art techniques was applied for the determination of trace level bromate in various water matrices, i.e., soft drinking water, hard drinking water, mineral water, swimming pool water, and raw water. In comparison of two analytical methods, it was found that the conductivity detection had the suitable advantage to simultaneously analyze bromate and inorganic anions, however, the bromate might not be precisely quantified due to the matrix effect especially by chloride ion. On the other hand, the trace bromate was analyzed effectively by the method of PCR-UV/Visible detection through triiodide reaction to satisfactorily minimize the matrix interference of chloride ion in various water samples, showing the good linearity and reproducibility. Furthermore, the method detection limit (MDL) and recovery were 0.161 ㎍/L and 101.0-108.1 %, respectively, with a better availability compared to conductivity detection.

The Calcium and Magnesium Ion-Exchange Properties of Snythetic δ-Na2Si2O5 from Water Glass (Water Glass로부터 합성한 δ-Na2Si2O5의 Ca2+, Mg2+ 이온교환성)

  • Jeong, Soon-Yong;Suh, Jeong-Kwon;Park, Jeong-Hwan;Doh, Myung-Ki;Koh, Jae-Cheon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.406-412
    • /
    • 1994
  • The ion-exchange properties of $Ca^{2+}$ and $Mg^{2+}$ ions have been studied in ${\delta}-Na_2Si_2O_5$ synthesized from water glass. Results show that optimum temperature for synthesis of ${\delta}-Na_2Si_2O_5$ was $725^{\circ}C$. Ion-exchange isotherms for $Ca^{2+}$ and $Mg^{2+}$ exchange for $Na^+$ in the synthetic ${\delta}-Na_2Si_2O_5$ show that the ion-exchange capacity of magnesium is better than that of calcium, and the ion-exchange of magnesium is less sensitive for temperature than that of calcium. When initial pH of solution is increased between 2 and 6, the ion-exchange capacities of magnesium and calcium decrease a little. However, they are almost constant above pH 6 because of alkali buffer effect of ${\delta}-Na_2Si_2O_5$. In the thermodynamic studies, it was found that Gibbs free energies of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange with inverse order of selectivity. The standard enthalpy and entropy of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange.

  • PDF

Effective Functionable Water Generation Characteristics of a Slit Type Parallel Plate Electrode System in Water (수중 슬릿형 평행평판전극계에 의한 효과적인 기능수 발생특성)

  • Lee, Dae-Hee;Kim, Jin-Gyu;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.26-28
    • /
    • 2000
  • A novel oxidant generation and ion precipitation cell with slits on parallel plate electrodes system has been proposed and an effect of the number and size of slits on ion precipitation and oxidant generation characteristics. As a result, with the electrodes with 48 slits($S=200{\times}60[mm^2]$. d = 1.5, 5.0 [mm]), it is found that the oxidant contained waters of 17.0 [ppmm] and 23.5 [ppmm] in acid water were obtained with 0.1 [wt%] NaCl dissolved tap water fed. And oxidant contained waters of 0.5 [ppmm] and 1.5 [ppmm] in alkali water were obtained with 0.1 [wt%] NaCl dissolved tap water fed. And the oxidant contained waters of 7.0 [ppmm] and 11.5 [ppmm] in mixed water were obtained with tap water and 0.1 [wt%] NaCl dissolved tap water fed. Consequently, very high ion precipitation and dense oxidant generation characteristics can be realized by having slits on the electrodes of conventional cells as these slits increase the electric fields and decrease the space charge limiting actions in interelectrode space.

  • PDF

The removal of Nitrate-nitrogen from ground water by electrodialysis (전기투석을 이용한 지하수 중의 질산성질소 제거)

  • Min, Ji-Hee;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.307-314
    • /
    • 2008
  • In this study, the effects of applied voltage, solution pH and coexistence of other ions such as sulfate ion (${SO_4}^{2-}$) and chloride ion ($Cl^-$) were investigated on the removal of nitrate-nitrogen ($NO_3{^-}-N$) from ground water by electrodialysis. The examined operating conditions were evaluated for optimizing the removal efficiency of $NO_3{^-}-N$. Real ground water samples taken from a rural area of Yongin city and artificial ones with components similar to the real ground water were tested for the study, which contained $NO_3{^-}-N$ concentration of 17mg/L that exceeds current drinking water quality standard of 10 mg/L. The increase in the removal rate of $NO_3{^-}-N$ was observed as the applied voltage increased from 5V to 30V, while no significant increase in the removal rate appeared at the applied voltage beyond 20V during a given operating time. The removal rate appeared to get lower at both acidic and basic condition, compared to neutral pH. Coexistence of of ${SO_4}^{2-}$and $Cl^-$ demanded much longer operating time to achieve a given removal rate or to meet a certain level of treated water concentration. When nitrate ion was combined with ${SO_4}^{2-}$and $Cl^-$, the removal rate was reduced by 4.29% and 10.83%, respectively.

The Influence of Aqueous Ionic, Condition on the Adsorption Features of Fluoride Ion on Waste Oyster Shell (수중 이온 환경이 폐굴껍질에 대한 불소 이온의 흡착 양상에 미치는 영향)

  • Lee, Jin-Sook;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.314-318
    • /
    • 2007
  • The feasibility of the employment of waste oyster shell as an adsorbent for fluoride ion has been tested by considering the effect ionic condition on the adsorption of fluoride ion on oyster shell. The adsorption capacity of oyster shell for fluoride ion was found not to be significantly influenced by the ionic strength of aqueous environment. The existence of complexing agent such as nitrilotriacetic acid in wastewater decreased the adsorbed amount of fluoride ion by forming a stable complex of $CaT^-$ and the adsorption reaction of fluoride ion on oyster shell was examined to be endothermic. The coexisting heavy metal ionic adsorbate in wastewater hindered the adsorption of fluoride ion, however, its adsorbed amount was increased as the particulate size of adsorbent was decreased. Finally, a serial adsorption column test has been conducted for a practical application of adsorption process and the breakthrough of the column adsorption was observed in 22 hours under the experimental condition.

Removal Characteristics of Copper Ion in Wastewater by Employing a Biomass from Liquor Production Process as an Adsorbent (주류 제조과정에서 발생하는 바이오매스를 흡착제로 한 구리 제거 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.626-631
    • /
    • 2006
  • The adsorption features of copper ion have been investigated by taking the barley residue which occurring from the beer production process as an adsorbent. Under the experimental conditions, adsorption equilibrium of copper ion was attained within 30 minutes after the adsorption started and the adsorption reaction was observed to be first order. As the temperature increased, the adsorbed amount of copper ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results which obtained by varying the temperatures, several thermodynamic parameters for copper adsorption reaction were estimated. Regarding the electrokinetic behavior of barley residue, its electrokinetic potential was observed to be positive below pH 5 and turned into negative above this pH. In the pH range from 1.5 to 4, copper adsorption was found to be increased, which was well explained by the electrokinetic behavior of barley residue in the pH range. When nitrilotriacetic acid, which is a complexing agent, was coexisted with copper ion, equilibrium adsorption of copper ion was decreased and this was presumed to be due to the formation of metal complex. In addition, the adsorbed amount of copper ion was examined to be increased when $KNO_3$ was coexisted, however, it approached a saturated value above a certain concentration of $KNO_3$.

A Study on the Metallic ion Migration Phenomena of PCB (PCB의 금속 이온 마이그레이션 현상에 관한 연구)

  • Hong Won Sik;Kang Bo-Chul;Song Byeong Suk;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2005
  • Recently a lots of problems have observed in high densified and high integrated electronic components. One of them is ion migration phenomena, which induce the electrical short of electrical circuit. ion migration phenomena has been observed in the field of exposing the specific environment and using for a long tin e. This study was evaluated the generation time of ion migration and was investigated properly test method through water drop test and high temperature high humidity test. Also we observed direct causes and confirmed generation mechanism of dendritic growth as we reproduced the ion migration phenomena. We utilized PCB(printed circuit board) having a comb pattern as follows 0.5, 1.0, 2.0 mm pattern distance. Cu, SnPb and Au were electroplated on the comb pattern. 6.5 V and 15 V were applied in the comb pattern and then we measured the electrical short time causing by ion migration. In these results, we examined a difference of ion migration time depending on pattern materials, applied voltage and pattern spacing of PCB conductor.

Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure (지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성)

  • Lee, Sang-hyup;Lee, Byoung-cheun;Lee, Kwan-yong;Choi, Yong-su;Park, Ki-young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.637-642
    • /
    • 2005
  • The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.