• Title/Summary/Keyword: ion trap detector

Search Result 6, Processing Time 0.02 seconds

Determination of Mequitazine in Human Plasma by Gas-Chro-matography/Mass Spectrometry with Ion-Trap Detector and Its Pharmacokinetics after Oral Administration to Volunteers

  • Kwon Oh-Seung;Kim Hye-Jung;Pyo Heesoo;Chung Suk-Jae;Chung Youn Bok
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1190-1195
    • /
    • 2005
  • The objective of this study was to develop an assay for mequitazine (MQZ) for the study of the bioavailability of the drug in human subjects. Using one mL of human plasma, the pH of the sample was adjusted and MQZ in the aqueous phase extracted with hexane; the organic layer was then evaporated to dryness, reconstituted and an aliquot introduced to a gas chromatograph/mass spectrometer (GC/MS) system with ion-trap detector. Inter- and intra-day precision of the assay were less than 15.1 and $17.7{\%}$, respectively; Inter- and intra-day accuracy were less than 8.91 and $18.6{\%}$, respectively. The limit of quantification for the current assay was set at 1 ng/mL. To determine whether the current assay is applicable in a pharmacokinetic study for MQZ in human, oral formulation containing 10 mg MQZ was administered to healthy male subjects and blood samples collected. The current assay was able to quantify MQZ levels in most of the samples. The maximum concentration ($C_{max}$ was 8.5 ng/mL, which was obtained at 10.1 h, with mean half-life of approximately 45.5 h. Under the current sampling protocol, the ratio of $AUC_{t{\rightarrow}last}$ to $AUC_{t{\rightarrow}{\infty}}$ was $934{\%}$, indicating that the blood collection time of 216 h is reasonable for MQZ. Therefore, these observations indicate that an assay for MQZ in human plasma is developed by using GC/MS with ion-trap detector and validated for the study of pharmacokinetics of single oral dose of 10 mg MQZ, and that the current study design for the bioavailability study is adequate for the drug.

Determination of Clotiazepam in the Plasma Using Gas Chromatography/Mass Spectrometry with an Ion-Trap Detector and its Application to Pharmacokinetics in Healthy Volunteers

  • Kwon, Oh-Seung;Kim, Seung-Yong;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • A method determining the plasma concentration of clotiazepam was developed by using gas chromatography/mass spectrometry with an ion-trap detector and was validated for applying pharmacokinetics to human volunteers orally taken 5 mg dose of clotiazepam. The detection limit was 1 ng/ml and the limit of quantitation was 5 ng/mt. Intraday reproducibility and accuracy bias % were less than 8.2 and 10.2% with inter-day variations for those being within 7.0 and 13.8%, respectively. The recovery of clotiazepam was higher than 87%. The principal pharmacokinetic parameters were determined from the plasma concentration-time plot by non-compartmental or two-compartmental analysis. In non-compartmental analysis, the elimination half-life of 10.4 hr and the area under the curve of 651.3 ng hr/ml were determined, and the maximal concentration (158.6 ng/ml) in the plasma was obtained at 0.56 hr post-dose. The developed method can be appropriate to apply pharmacokinetics and bioequivalence of clotiazepam.

Qualitative Analysis of the Major Constituents in Traditional Oriental Prescription Bang-poong-tong-sung-san by Liquid Chromatography/Ultraviolet Detector/Ion-Trap Time-of-Flight Mass Spectrometry

  • Eom, Han Young;Kim, Hyung-Seung;Han, Sang Beom
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • An advanced and reliable high performance liquid chromatography (HPLC)/ultraviolet detector (UV)/ion-trap time-of-flight (IT-TOF) mass spectrometry was developed for the simultaneous quantification of 19 marker compounds in Bang-poong-tong-sung-san (BPTS), a traditional oriental prescription. Various parameters affecting HPLC separation and IT-TOF detection were investigated, and optimized conditions were identified. The separation was achieved on a Capcell PAK C18 column ($1.5mm{\times}250mm$, $5{\mu}m$ particle size) using a gradient elution of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.1 mL/min. The column temperature was maintained at $40^{\circ}C$ and the injection volume was $2{\mu}L$. IT-TOF system was equipped with an electrospray ion source (ESI) operating in positive or negative ion mode. The optimized electrospray ionization parameters were as follows: ion spray voltage, +4.5 kV (positive ion mode), or -3.5 kV (negative ion mode); drying gas ($N_2$), 1.5 L/min; heat block temperature, $200^{\circ}C$. Automatic $MS^n$ (n = 1~3) analyses were carried out to obtain structural information of analytes. Elemental compositions and their mass errors were calculated based on their accurate masses obtained from a formula predictor software. The marker compounds in BPTS were identified by comparisons between $MS^n$ spectra from standards and those from extracts. Moreover, the libraries of $MS^2$ and $MS^3$ spectra and accurate masses of parent and fragment ions for marker compounds were constructed. The developed method was successfully applied to the BPTS extracts and identified 17 out of 19 marker compounds in the BPTS extracts.

Study on elemental analysis of metal and ceramic samples by using laser ablation ion trap mass spectrometry(LAITMS) (레이저 이온화 이온트랩 질량분석법을 이용한 금속 및 세라믹 시료의 원소분석에 관한 연구)

  • Song, Kyuseok;Park, Hyunkook;Cha, Hyungki;Lee, Sang Chun
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-14
    • /
    • 2002
  • Laser ablation ion trap mass spectrometry (LAITMS) was developed for the analysis of metal and ceramic samples. For this study, XeCl excimer laser (308 nm) was used for ablating the samples and ITMS was used as a detector. Samples were introduced from outside of a ring electrode and this way of sample introduction was very effective for solid samples when laser ablation was employed. Helium gas was used as a buffer gas, and its effect on sensitivity and some parameters (buffer gas pressure, ion storage time, and cut-off RF voltage) were studied. The optimized conditions were $1{\times}10^{-4}$ Torr of buffer gas pressure, 100 ms of ion storage time and $1150V_{p-p}$ of cut-off RF voltage. From that results, copper (Cu) and molybdenum (Mo) metals were tested with LAITMS and the mass spectra of these pure metals were compared with the natural abundance of isotope ratio. We also examined ceramic samples ($Al_2O_3$, $ZrO_2$) and represented the result of elemental analysis.

Simultaneous Analysis of Bioactive Metabolites from Caulis Lonicera japonica by HPLC-DAD-ion trap-MS (HPLC-DAD-ion trap-MS를 이용한 인동 생리활성 물질의 동시분석)

  • Ryu, Sung-Kwang;Won, Tae-Hyung;Kang, Sam-Sik;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2010
  • A high-performance liquid chromatography (HPLC) with DAD detector and electrospray ionization mass spectrometry (ESI-MS) was established for the simultaneous determination of coniferin (1), loganic acid (2), demethylsecologanol (3), sweroside (4) and loganin (5) from caulis Lonicera joponica. The optimal chromatographic conditions were obtained on an ODS column ($5{\mu}m$, $4.6{\times}150mm$) with the column temperature $35^{\circ}C$. The mobile phase was composed of (A) water with 0.1% formic acid and (B) methanol with 0.1% formic acid using a gradient elution, the flow rate was 0.3 ml/min. Detection wavelength was set at 254 nm. All calibration curves showed good linear regression ($r^2$>0.998) within test ranges. The developed method provided satisfactory precision and accuracy with overall intra-day and interday variations of 0.16~3.28% and 0.14~1.99%, respectively, and the overall recoveries of 99.39~105.89% for the five compounds analyzed. The verified method was successfully applied to quantitative determination of the two types (phenolic compounds and iridoids) of bioactive compounds in 24 commercial caulis L. japonica samples from different markets in Korea and China. The analytical results demonstrated that the contents of the five analytes vary significantly with sources.

In vitro Biofumigation of Brassica Tissues Against Potato Stem Rot Caused by Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza;Jiang, Heng;Xie, Guan-Lin;Cui, Zhou-Qi;Zhang, Jingze;Li, Bin
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.185-190
    • /
    • 2012
  • Sclerotinia sclerotiorum is a serious pathogen which causes yield loss in many dicotyledonous crops including potato. The objective of this study was to assess the potential of biofumigation using three Brassica crops including Brassica napus, B. juncea and B. campestris against potato stem rot caused by S. sclerotiorum by in vitro tests. Both macerated and irradiated dried tissues were able to reduce radial growth and sclerotia formation of five pathogen isolates on PDA, but macerated live tissues were more effective. Compared with other tested crops, B. juncea showed more inhibitory effect against the pathogen. The volatile compounds produced from macerated tissues were identified using a gas chromatograph-mass spectrometer. The main identified compounds were methyl, allyl and butyl isothiocyanates. Different concentrations of these compounds inhibited mycelial growth of the pathogen in vitro when applied as the vapor of pure chemicals. A negative relationship was observed between chemicals concentrations and growth inhibition percentage. In this study, it became clear that the tissues of local Brassica crops release glucosinolates and have a good potential to be used against the pathogen in field examinations.